65 research outputs found

    Two-dimensional optics : diffraction and dispersion of surface plasmons

    Get PDF
    Part 1: We studied the interaction of light with various devices made from nanoslits in metal: a quarter-wave retarder, a spin-to-orbital angular momentum converter, and a vortex analyzer. Part 2: We demonstrate anomalous dispersion of surface plasmons on an aluminum surface.Quantum optics and Quantum information - OU

    Effective bandwidth vectors for multiclass traffic multiplexed in partitioned buffer

    Full text link

    K-essential Phantom Energy: Doomsday around the Corner? Revisited

    Full text link
    We generalize some of those results reported by Gonz\'{a}lez-D\'{i}az by further tuning the parameter (β\beta) which is closely related to the canonical kinetic term in kk-essence formalism. The scale factor a(t)a(t) could be negative and decreasing within a specific range of β\beta (1/ω\equiv -1/\omega, ω\omega : the equation-of-state parameter) during the initial evolutional period.Comment: 1 Figure, 6 page

    Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up

    Full text link
    We consider late-time cosmology in a (phantom) scalar-tensor theory with an exponential potential, as a dark energy model with equation of state parameter close to -1 (a bit above or below this value). Scalar (and also other kinds of) matter can be easily taken into account. An exact spatially-flat FRW cosmology is constructed for such theory, which admits (eternal or transient) acceleration phases for the current universe, in correspondence with observational results. Some remarks on the possible origin of the phantom, starting from a more fundamental theory, are also made. It is shown that quantum gravity effects may prevent (or, at least, delay or soften) the cosmic doomsday catastrophe associated with the phantom, i.e. the otherwise unavoidable finite-time future singularity (Big Rip). A novel dark energy model (higher-derivative scalar-tensor theory) is introduced and it is shown to admit an effective phantom/quintessence description with a transient acceleration phase. In this case, gravity favors that an initially insignificant portion of dark energy becomes dominant over the standard matter/radiation components in the evolution process.Comment: LaTeX file, 48 pages, discussion of Big Rip is enlarged, a reference is adde

    Extended tachyon field, Chaplygin gas and solvable k-essence cosmologies

    Get PDF
    We investigate a flat Friedmann-Robertson-Walker spacetime filled with k-essence and find the set of functions F which generate three different families of extended tachyon fields and Chaplygin gases. They lead to accelerated and superaccelerated expanding scenarios. For any function F, we find the first integral of the k-field equation when the k-field is driven by an inverse square potential or by a constant one. In the former, we obtain the general solution of the coupled Einstein-k-field equations for a linear function F. This model shares the same kinematics of the background geometry with the ordinary scalar field one driven by an exponential potential. However, they are dynamically different. For a constant potential, we introduce a k-field model that exhibits a transition from a power-law phase to a de Sitter stage, inducing a modified Chaplygin gas.Comment: 24 pages, revised version accepted for publication in Phys. Rev.

    Universal procedure to cure future singularities of dark energy models

    Full text link
    A systematic search for different viable models of the dark energy universe, all of which give rise to finite-time, future singularities, is undertaken, with the purpose to try to find a solution to this common problem. After some work, a universal procedure to cure all future singularities is developed and carefully tested with the help of explicit examples corresponding to each one of the four different types of possible singularities, as classified in the literature. The cases of a fluid with an equation of state which depends on some parameter, of modified gravity non-minimally coupled to a matter Lagrangian, of non-local gravity, and of isotropic turbulence in a dark fluid universe theory are investigated in detail

    On Isotropic Turbulence in the Dark Fluid Universe

    Get PDF
    As first part of this work, experimental information about the decay of isotropic turbulence in ordinary hydrodynamics, u^2(t) proportional to t^{-6/5}, is used as input in FRW equations in order to investigate how an initial fraction f of turbulent kinetic energy in the cosmic fluid influences the cosmological development in the late, quintessence/phantom, universe. First order perturbative theory to the first order in f is employed. It turns out that both in the Hubble factor, and in the energy density, the influence from the turbulence fades away at late times. The divergences in these quantities near the Big Rip behave essentially as in a non-turbulent fluid. However, for the scale factor, the turbulence modification turns out to diverge logarithmically. As second part of our work, we consider the full FRW equation in which the turbulent part of the dark energy is accounted for by a separate term. It is demonstrated that turbulence occurrence may change the future universe evolution due to dissipation of dark energy. For instance, phantom-dominated universe becomes asymptotically a de Sitter one in the future, thus avoiding the Big Rip singularity.Comment: 10 pages, no figures, significant revision. Matches published versio

    The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum

    Full text link
    Based on the 4D momentum, the influence of quintessence on the gravitational frequency shift and the deflection of light are examined in modified Schwarzschild space. We find that the frequency of photon depends on the state parameter of quintessence wqw_q: the frequency increases for 1<wq<1/3-1<w_q<-1/3 and decreases for 1/3<wq<0-1/3<w_q<0. Meanwhile, we adopt an integral power number aa (a=3ωq+2a = 3\omega_q + 2) to solve the orbital equation of photon. The photon's potentials become higher with the decrease of ωq\omega_q. The behavior of bending light depends on the state parameter ωq\omega_q sensitively. In particular, for the case of ωq=1\omega_q = -1, there is no influence on the deflection of light by quintessence. Else, according to the H-masers of GP-A redshift experiment and the long-baseline interferometry, the constraints on the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres

    Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity

    Full text link
    We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory.Comment: LaTeX 12 pages, typos are correcte
    corecore