
Proceedings of the 3rd International Workshop on
Protocols for Multimedia Systems (PROMS’96)
October 1996, Madrid

Design of a shared whiteboard component for 
multimedia conferencing

Marten van Sinderen, Phil Chimento, Luís Ferreira Pires
<sinderen,chimento,pires@cs.utwente.nl>

Centre for Telematics and Information Technology
University of Twente

Abstract

This paper reports on the development of a framework for multimedia applica-
tions in the domain of tele-education. The paper focuses on the protocol design
of a specific component of the framework, namely a shared whiteboard appli-
cation. The relationship of this component with other components of the frame-
work is also discussed. A salient feature of the framework is that it uses an ad-
vanced ATM-based network service. The design of the shared whiteboard com-
ponent is considered representative for the design as a whole, and is used to
illustrate how a flexible protocol architecture utilizing innovative network func-
tions and satisfying demanding user requirements can be developed.

1. Introduction

The Platinum project1 aimed at developing distributed multimedia applications, support-
ed by broadband network technology. This project takes account of both user and tech-
nology perspectives in order to enable sophisticated services that support the actual end-
user needs. The concrete objectives of the project are:

• design, implementation and analysis of an innovative, ATM-based, broadband net-
work platform that supports multimedia multiparty communication services;

1 The Platinum project has been partially supported by the Dutch Ministry of Economic Affairs. 
Partners in the project were: Lucent Technologies (formerly AT&T), Telematics Research Centre, 
and Centre for Telematics and Information Technology. The project started in October 1994 and 
ended in June 1996.



Design of a shared whiteboard component for multimedia conferencing

• design and implementation of a middleware platform that sits on top of the net-
work and supports the generic functions of distributed multimedia applications;

• design and implementation of a multimedia conferencing application that uses the
middleware and that itself can be used in a tele-education context.

This paper presents the overall architecture of the Platinum design and further focuses
on the protocol design of a shared whiteboard application, which is part of the multimedia
conferencing application. The shared whiteboard application allows users to manipulate
a set of information objects, while maintaining a common view of this set of objects. As
such, it can be used as a building block in more specific applications, such as collaborative
editing. The shared whiteboard application offers a special shared whiteboard medium
type to its users, which is one of the medium types supported by the multimedia confer-
encing application. Any multimedia conferencing user can participate in zero, one or
more media, including the shared whiteboard medium, in which case the user is (as well)
a shared whiteboard user. The set of shared whiteboard users can be dynamically changed,
requiring interactions between the shared whiteboard application and the control part of
the multimedia conferencing application.

Many multimedia conferencing systems, some with a shared whiteboard facility, have
been developed in the past (e.g., [3, 7, 11]). In essence, the Platinum multimedia confer-
encing application does not offer more, or more advanced, functions compared to these
systems. Its design is interesting, however, for two reasons. First, it serves as a test envi-
ronment for the network platform, which does embody a number of innovative functions;
the Platinum application had to exploit, via the middleware, these functions. Second, the
Platinum application was designed with a strong requirement for flexibility: it should be
easy to extend and modify, and so it provides a sound basis for developing other applica-
tions. The flexibility requirement motivated the decomposition of the Platinum applica-
tion into a middleware layer and an application layer: the former should provide a plat-
form for developing distributed multimedia applications in general, the latter should be
used as a basis for developing applications in the tele-learning application domain. This
paper therefore highlights the design approach and the architectural decisions, in particu-
lar related to protocols, that underlie the Platinum design. Details of the architecture are
only discussed with respect to the shared whiteboard application, which is considered rep-
resentative for the Platinum design as a whole.

The objective of the paper is to show how a flexible protocol architecture utilizing in-
novative network functions and satisfying demanding user requirements can be devel-
oped. The paper also gives an outlook of further work that will be done in follow-up
projects.

The remaining of this paper is organized as follows: Section 2 outlines the overall ar-
chitecture of the Platinum design; Section 3 presents the design and the resulting architec-
ture of the shared whiteboard application; Section 4 discusses some possible future exten-
sions and alternatives related to the shared whiteboard design; and Section 5 introduces
some relevant discussion points related to the Platinum design.



M. van Sinderen, P. Chimento, L. Ferreira Pires

2. Overall architecture

Figure 1 depicts the overall architecture of the Platinum design. The architecture consists
of a layered structure, which is further explained below, as well as a collection of distrib-
uted end-systems (or Customer Premises Equipment). Only three end-systems are shown
in Figure 1; the elaborated part in the rightmost end-system represents an internal struc-
ture in terms of application components, which are explained below.

2.1 Tele-communication services

The network platform built in the Platinum project supports calls between multiple users,
where each call consists of a set of connections. Each connection is capable of supporting
some specific medium type and involves any non-empty subset of call users. The network
platform therefore supports multimedia and multiparty communication services. The cur-
rent implementation only employs a single ATM switch (with co-processor) which is con-
nected to all network end-systems. The interworking between the ATM switch and each
network end-system is implemented by a User Network Interface (UNI) protocol stack
consisting of Q.2931, AAL, ATM and Physical layer signalling protocols. The users of

Fig. 1. Overall architecture of the Platinum design

TSCS

switch

HCI

network
end-system

UNI

middleware
entity

application
entity

TSCS

HCI

S
W

B

C
M C
E

TSCS

HCI

middleware
entity

application
entity

network

middleware

application

UNI

CPE

CPE = Customer Premises Equipment
HCI = Human Computer Interface
SWB = Shared Whiteboard
CM = Conference Management

CE = Collaborative Editing
CS = Connection Server API
TS = Telecommunication Service API
UNI = User Network Interface

network
end-system

network
end-system

middleware
entity

layer

layer

CPE CPE

UNI



Design of a shared whiteboard component for multimedia conferencing

the network platform (i.e., the middleware entities) interact with the network (i.e., the net-
work end-systems) via a Telecommunication Service (TS) Application Programming In-
terface (API). ATM is claimed to be a best match for multimedia application requirements
(e.g., see [9]); one of the goals of the Platinum project, which is not further discussed in
this paper, is to investigate this claim.

2.2 Middleware design

The middleware layer consists of middleware entities on which multimedia applications
can be developed. It provides a cooperation context, called session, to its users (the appli-
cation entities) which can be easily extended and modified to suit new or special applica-
tion requirements. Two aspects of this layer have been distinguished in the project: the
protocol architecture, which is concerned with the proper interworking of middleware en-
tities in different end-systems, and the software architecture, which implements the pro-
tocols and local support functions in a highly modular fashion, in order to satisfy the flex-
ibility (‘easy to extend and modify’) requirement.

The protocol architecture identifies protocol building blocks, such as start_session,
close_session, add_to_session, delete_from_session, modify_session and medium_ data_transfer,
which together provide a rich conferencing service. The building blocks either manage the
use of the network service via the TS-API, add additional control by exchanging control
information as data on the (user- or control-plane) network connections, or accomplish the
transfer of medium data across user-plane network connections.

The software architecture uses object-oriented technology, motivated by the flexibil-
ity requirement mentioned above. Its top level structure is based on the Model/View/Con-
troller (MVC) design pattern (e.g., see [2]), which supports a separation of the following
middleware aspects: maintenance of dynamic context information about a session (‘mod-
el’), use of the session (‘views’) and management of the session (‘control’). The identifi-
cation of classes, their responsibilities and their relationships is based on the application
of the MVC pattern. ‘Control’ classes are mostly responsible for the interaction with the
network through the TS-API (control-plane); ‘view’ classes are mostly related to the use
of network connections (user-plane).

2.3 Applications

In order to determine useful applications of the middleware platform, user requirements
from a tele-education context were selected and analysed. The tele-education context is
formed by educational activities at the University of Twente, in collaboration with other
technical universities. As a result of this activity, three applications were identified: (mul-
timedia) conference management, shared whiteboard manipulation and collaborative ed-
iting. 

The application-specific parts of these applications form the Platinum application lay-
er, while generic aspects are supported by the middleware layer. The conference manage-
ment application, with functions for establishing and releasing associations between par-
ticipants and media, and for controlling the concurrent use of media, provides a confer-
encing framework in which the latter two applications can be used. The shared
whiteboard application can be seen as the provider of a special medium type: a collection



M. van Sinderen, P. Chimento, L. Ferreira Pires

of textual and graphical objects, which can be manipulated by each of the participants as-
sociated with this medium. It is the responsibility of this application to ensure that the par-
ticipants have a consistent (shared) view of the objects, and that newly associated partic-
ipants are informed of the current view. The collaborative editing application supports
joint editing of document parts which together form a compound document. Also the
compound document can be seen as a special medium type, structured in terms of docu-
ment parts, whose view among the associated participants must be kept consistent by the
collaborative editing application. As with the middleware layer, the architecture of the ap-
plication layer has a protocol and a software perspective.

The overall architecture depicted in Figure 1 is a static model of the main responsibil-
ities identified in the Platinum design, common to both a protocol and a software perspec-
tive. A protocol architecture is a further elaboration of the overall architecture: it captures
interoperability requirements, by identifying and structuring protocol functions. Also a
software architecture is a further elaboration of the overall architecture: it captures re-
quirements on software components by identifying and structuring (relating) object class-
es. Since the software architecture must consider both local and interoperability (inter-
working) aspects, the protocol architecture imposes functional requirements to the soft-
ware architecture.

A prototype that partly implements the Platinum application and middleware software
architectures has been demonstrated during the project closing meeting in June 1996.

3. Shared whiteboard architecture

This section presents an overview of the protocol architecture of the shared whiteboard
application and briefly considers the software architecture and the interactions with the
control part of the conferencing application.

3.1 User requirements and service perspectives

Starting point for the development of the shared whiteboard protocol and software archi-
tecture was a set of user requirements which followed from the analysis of a tele-educa-
tion context. The main requirements are:

• viewing and manipulation (addition, modification and deletion) of shared informa-
tion objects, including text and graphical objects; and

• assignment and de-assignment of an exclusive right to manipulate one or more in-
formation objects.

The following key design decisions are derived from these requirements:
• a user views information objects through a local copy;
• to provide the illusion of shared information objects, local copies are only changed

under control of the shared whiteboard application layer. The shared whiteboard
application layer must ensure that the same manipulations are applied in the same
order to all local copies. These manipulations do not have to be performed neces-
sarily at the same time, since possible temporary inconsistencies are not noticeable
by the users;



Design of a shared whiteboard component for multimedia conferencing

• the control exercised by the shared application layer implies that each user must
submit its manipulation requests (operations) to the shared whiteboard application
layer. The shared whiteboard application layer accepts or refuses operations: ac-
cepted operations are forwarded to all users, which receive them in the same order,
whereas refused operations are only indicated to the requesting users;

• users can obtain the exclusive right to manipulate certain information objects by
submitting a select operation; they can give up a previously obtained right by sub-
mitting an unselect operation.

The model of the shared whiteboard application which results from these design deci-
sions is shown is Figure 2. The model identifies local applications and a control part, and
interactions between local applications and the control part. The interactions represent op-
eration requests and indications of accepted and refused operations. The control part rep-
resents the shared whiteboard application layer, whose (distributed) implementation is not
yet considered.

The integrated view of the control part and the interactions with its environment (local
applications), can best be described with a service definition. We consider here two as-
pects of the service definition: an object-oriented view and a user-oriented view. Figure 3
describes these views by means of state transition diagrams. 

The object-oriented view considers the different interactions and their relationships
which apply to a single information object. The user-oriented view considers the different
interactions and their relationships which involve a single local application (i.e., a service
user). The user-oriented view reveals that a distinction is made between a confirm and an
indication interaction: a confirm interaction informs a user about the outcome (accepted
or refused) of a previously requested operation, and an indication interaction informs a
user about an accepted operation requested by some other user.

3.2 Protocol layers

The protocol architecture of the shared whiteboard application serves to identify and
structure the protocols that implement the service views mentioned above. The following
additional design decisions form the basis for the protocol architecture:

• each local application is locally supported by a user agent in the application layer;

Fig. 2. Model of the shared whiteboard application

control



M. van Sinderen, P. Chimento, L. Ferreira Pires

• user agents communicate with a central controller in the application layer. The
central controller resides on an end-system whose participation in the shared
whiteboard application is committed. A local application with committed partici-
pation is termed a critical user for this reason;

• the central controller receives operations from the user agents. It decides which op-
erations can be accepted and which must be refused, broadcasting a positive indi-
cation to all user agents for each accepted operation and returning a negative re-
sponse to the requesting user agent for each refused operation. 

Provided that messages exchanged between the central controller and a user agent are
not lost and are not re-ordered, accepted operations can always be passed to the local ap-
plications in some unique order. Multicast with both guaranteed delivery and order pres-
ervation is not (yet) supported by the Platinum user-plane, so that a layered architecture
with three layers had to be developed:

• local application layer: responsible for maintaining the local copies of the shared
information objects. Each entity in this layer represents a local application which
only changes its local copy if an accepted operation is received;

• control layer: responsible for accepting and refusing operations. It contains one or
more user agent entities and a single controller entity;

• multicast layer: responsible for providing a reliable multicast service with order
preservation. The entities in this layer can multicast and receive messages using
the available user data transfer facilities (user-plane).

Figure 4 shows the shared whiteboard protocol architecture with three end-systems.
One of the entities in the control layer combines the user agent and controller role; this is
the case if the entity has been assigned the controller role and at the same time must sup-
port a local application. The middleware layer is not represented in Figure 4; this is the

Fig. 3. (a) Object-oriented service view and (b) user-oriented service view

add-req

add-cnf-

add-cnf+

unselect-cnf+

select-cnf-

select-

delete-

unselect-

modify-req

delete-
req delete-

cnf-

modify-
cnf+/-

select-
cnf+ req

unselect-
req

cnf-

cnf+

x-req

x-cnf+/-

x-indx-ind

(a)

(b)

S = selected state
U = unselected state
D = deleted state

req = request
ind = indication
cnf+ = confirm (accepted)
cnf- = confirm (refused)idle

null S U

D



Design of a shared whiteboard component for multimedia conferencing

case since, from a protocol perspective, the multicast layer can directly use the user-plane
(data) connections provided by the network.

3.3 Protocol behaviour

The entities in the control layer communicate through the exchange of PDUs via the mul-
ticast layer. For each interaction with a local application there is a corresponding PDU de-
fined, except for the confirm (accepted) and indication interaction, which have the same
corresponding PDU type. For example, an add-req results in the exchange of an AddReq

PDU, while an add-ind or an add-cnf+ result from the exchange of an AddPCnf PDU. Figure
5 illustrates the exchange of PDUs in response to an arbitrary operation request (x-req) in
case the operation is successfully performed.

A number of additional PDUs are defined to perform user agent initialization and re-
covery from data loss. User agent initialization is necessary if a shared whiteboard user
is added to the current group of shared whiteboard users. A user agent is activated for the
new user, and the controller entity sends a StateUpdate PDU to this user agent, conveying
the current state of the shared whiteboard. This current state contains the information ob-
jects held by the local copies at that moment. The user agent returns a StateUpdateAck PDU
to confirm the state transfer.

Recovery from loss is a function which seems redundant if the multicast layer provides
full reliability. There are two reasons why this function is useful. First, because the mul-
ticast layer is a more generic layer than the control layer, and providing full reliability may
be too ‘heavy’ and consequently too slow for many applications. A reasonable level of
reliability seems to be more appropriate instead, leaving application-specific upgrading of
reliability to higher level protocols. Second, the investment required for adding a recovery
function in the control layer is small, since the PDUs required for user agent initialization
can also be used in this case. Detection of loss is achieved by the introduction of a version
number field in the PDUs that are sent by the controller in response to an accepted request

Fig. 4. Layered protocol architecture of the shared whiteboard application

user agent user agent/
controller

multicast
entity

entity
user agent

entityentity

multicast
entity

multicast
entity

Platinum network platform

multicast

control

local application

layer

layer

layer



M. van Sinderen, P. Chimento, L. Ferreira Pires

for an operation. The version number field contains a value for each information object
which is referenced in the operation request; this value indicates the number of manipu-
lations which have been accepted with respect to the associated information object. If a
user agent receives a version number value which is higher than expected, this means that
a previously accepted operation with respect to the associated information object has been
lost, and the local copy is probably no longer consistent. The user agent then requests a
state transfer, by sending a StateUpdateReq PDU to the controller. The controller responds
with a StateUpdate PDU, which is subsequently confirmed with a StateUpdateAck PDU.

Depending on the PDU type or contents, the controller in the control layer either
broadcasts a PDU to all user agents or it sends a PDU to a specific user agent. The entities
of the multicast layer support multicast using the user-plane network connections. These
connections are multi-party, which means that the end-system of the controller is in prin-
ciple connected to all end-systems that host a user agent. Therefore a filtering function is
necessary in the multicast layer. This filtering function is based on the exchange of a Mul-

ticast PDU with a recipient field, which specifies the actual recipients (user agents or the
controller in case of the control layer) of the data conveyed in the PDU. If a Multicast PDU
is received by a multicast entity and this entity does not support one of the recipients spec-
ified in the PDU, this PDU is discarded; otherwise, the data conveyed in the PDU is
passed to the local recipient.

Since the connections provided by the network platform are considered sufficiently re-
liable, the current version of the multicast layer does not contain any reliability upgrading
functions.

Fig. 5. Scenario for servicing an operation request

x-req

XReq PDU

x-cnf+

mc-req mc-ind mc-ind mc-req

XPCnf PDU XPCnf PDU

x-ind x-ind

mc-ind

shared whiteboard user 1
shared whiteboard user 2 shared whiteboard user 3 

useruser

multicast service provider

agent agent

user agent/
controller

(initiator)



Design of a shared whiteboard component for multimedia conferencing

3.4 Software architecture

The software architecture of the shared whiteboard application is represented in Figure 6
by a class diagram. This diagram is not complete, since it only shows some essential class-
es of the architecture. Classes LocalApplicationEntity, UserAgentControllerEntity and Multicas-

tEntity are specific to the application layer; the other classes are defined by the middleware
software architecture.

LocalApplicationEntity represents a local application entity, which must control access to
shared information objects and display the information objects to the user. It is a subclass
of MediumPresenter, which is a general abstraction of system resources concerned with ac-
cess to and management of a window. UserAgentControllerEntity represents the combined re-
sponsibility of a user agent and a controller. It is a subclass of MediumTransporter, which
takes care of generation and transportation of information pertaining to some medium
type. MulticastEntity represents a multicast entity and is also a subclass of MediumTransporter.
MediumBuilder is responsible for building a stack of presenters and transporters, resulting
in a medium of a specific type. MediumBuilder uses SharedWhiteboardMedium, which repre-
sents the shared whiteboard medium. TransportAdaptor is responsible for mapping the low-
est transport interface in the stack onto the communication interface supported by the op-
erating system.

All middleware classes mentioned here are classes which belong to the view part in
the Model/View/Controller design pattern, except SharedWhiteboardMedium which belongs
to the model part. The decomposition achieved in the protocol architecture is retained in
the software architecture; the software architecture extends and refines this structure by
also considering local aspects. For example, a more refined version of the software archi-
tecture shows a further decomposition of LocalApplicationEntity. The software architecture

Fig. 6. Software architecture of the shared whiteboard application

Medium
Presenter

Shared
Whiteboard

Medium

Medium
Builder

Local
Application

Entity

Medium
Transporter

UserAgent
Controller

Entity

Transport
Adaptor

Multicast
Entity



M. van Sinderen, P. Chimento, L. Ferreira Pires

also shows the relationships between objects that implement protocol functions and other
middleware objects.

3.5 Interactions with conference management

In order to be able to communicate with user agents, the controller must be aware of which
users are participating in the shared whiteboard at each moment. Therefore the shared
whiteboard application has to interact with the conference management application. 

First, the addition of a shared whiteboard medium to the conference (session) causes
the shared whiteboard application to be initialized and the controller to be determined. In
the current design, this is not done dynamically, but rather is fixed. The initial composi-
tion of the group of shared whiteboard users will also be determined at this time, and so
this information must be communicated from the conference management to the shared
whiteboard application. The shared whiteboard protocol stack reside in the user-plane,
whereas the conference management protocol stack works (mostly) in the control-plane.
Thus, in order for the multicast layer (in the user-plane) to deliver messages to the proper
destinations, it must have information about which users are attached to the medium,
which is determined by conference management.

Second, the controller must be kept aware of changes in the composition of the group
of shared whiteboard users. The conference management application informs the control-
ler which users have been added to, or removed from, the shared whiteboard medium. The
multicast layer group information is thus kept consistent with the state of the medium it-
self. The user agents do not need this information, since they communicate only with the
controller and not with other user agents. The user agents learn the address of the control-
ler when they are initialized. In this way, interaction with conference management is lim-
ited to the controller and there is no need to worry about synchronizing the information
that comes from conference management among all the control layer entities. 

4. Future extensions and alternatives

The current design of the control layer protocol is relatively simple. It assumes a fixed
central controller that serves a group of user agents. New user agents may join this group
and current user agents may leave this group, but the controller does not change during an
instance of the shared whiteboard. Although this protocol has the benefit of being quite
simple, there are some drawbacks. First, the fixed controller is a single point of failure. If
the controller itself fails, or if the connections to the controller fail, then it simply is not
possible to use the shared whiteboard further. Second, the controller cannot leave (or de-
tach) from the medium or leave the session. This limits somewhat the flexibility of the
participants and of the system as a whole. We discuss some possible enhancements below.

4.1 Dynamic assignment of controller role

A possible enhancement of this design is to allow the dynamic assignment of the control-
ler role. The benefit of using dynamic assignment of the controller role is that the shared
whiteboard application is no longer dependent of the availability of one specific end-sys-



Design of a shared whiteboard component for multimedia conferencing

tem. With this enhancement, a controller would be allowed to leave the shared white-
board, in which case its role is taken over by one of the user agents. Furthermore, if the
controller fails, the shared whiteboard application would not be necessarily disrupted,
since the faulty controller would be removed from the group, and the application would
continue after a new controller was assigned and initialized. Finally, if performance be-
comes a problem, then the controllership could be transferred to an end-system that has
the most processing power.

The selection of a new controller could be based on a simple algorithm, e.g., to choose
the user agent with the highest or lowest network address, without involving any extra
communication between end-systems. The procedures for initializing the new controller
would depend on whether the controllership changes due to a ‘hard failure’ or is accom-
plished more gracefully. If the change of controller is due to a hard failure, then the state
of the collection of information objects as seen by this new controller would become the
reference state. After a more graceful change of controller, the state of the old controller
could be passed explicitly to the new controller; meanwhile the old controller would
refuse to accept new requests from the user agents and redirect the user agents to the new
controller. Mechanisms that allow all user agents to synchronize with (the state of) the
new controller would then be necessary.

4.2 Multicast reliability

Another possible extension of the current design is to add reliability functions to the mul-
ticast layer. The current multicast layer is not fully reliable and consequently the control
layer contains functions to detect data loss and to repair its effects (see Section 3.3).
Though this design is effective, it can be costly since it may involve the exchange of pos-
sibly large state information. For a moderately unreliable medium this design is likely to
perform quite poorly. 

In addition, a drawback of building reliability protocols into applications is that the
cost is incurred for each application with such a requirement. This is actually the counter-
part of the argument in favour of the current design presented in Section 3.3. For these
reasons it makes sense to build reliability into the multicast protocol, even though this is,
in itself, a formidable task. There are, however, a large number of researchers who have
worked on this problem. See, for example, the references in [10].

4.3 Distribution of shared information

The use of centralised or distributed solutions to the shared information object problem
presented in this paper is another important issue. The design that we have presented is
clearly centralised, and has the disadvantages associated with that design: less fault-toler-
ance and poor scalability characteristics. However, the trade-off is between the complex-
ity of the design and implementation effort and the requirements of the system. For the
expected operating environment and for the goals of the system, such a centralised design
seems to be adequate.

However, as the system moves to (much) larger scale user groups and toward high re-
liability requirements which may be imposed by some environments in which the confer-
encing application will be used, a distributed control solution will have to be considered.



M. van Sinderen, P. Chimento, L. Ferreira Pires

Fortunately, there has been a great deal of progress in this area recently and there are a
number of excellent alternate protocols available for providing distributed processes with
the same view of the state of an object (see, e.g., [6, 4, 10, 5]). These protocols could be
incorporated into the design shown in Figure 4 by replacing the control layer and possibly
the multicast layer, without disturbing the local application layer.

5. Discussion

It is not yet possible to draw final conclusions about the flexibility of the Platinum design,
since little experience has been gained with the use of the Platinum design in practice, and,
consequently, the design has not been challenged by requirements for modification and
extension. However, some interesting discussion points related to the Platinum design are
briefly presented below.

5.1 Protocols and services

In any distributed system design, interoperability of the distributed parts of the system is
a major concern. In particular when the distributed system is implemented on different
hardware platforms, or is expected to evolve in order to cover additional (different) hard-
ware platforms, a model of the distributed system which addresses interoperability as-
pects but abstracts form other aspects is urgently needed. Such a model is provided by a
protocol architecture. A protocol architecture can be considered as an intermediate result
of the domain analysis in the software development process in which interoperability as-
pects are explicitly addressed. The relationship between protocol design and software de-
sign is depicted in Figure 7.

Many protocols are designed to perform multiple functions and provide multiple serv-
ices. This is done for efficiency reasons but may result in complex and inflexible systems.

Fig. 7. Relationship between protocol design and software design

user requirements

service
definition

protocol
specification

domain
analysis

software
architecture

distributed system (application)
implementation

so
ft

w
ar

e 
de

si
gn

 p
ro

ce
ss

pr
ot

oc
ol

 d
es

ig
n 

pr
oc

es
s



Design of a shared whiteboard component for multimedia conferencing

The Platinum design identifies micro-protocols, which are relatively simple since they
perform a single function or a set of coherent functions. These protocols can be synthe-
sized to implement multifunction protocols. By the identification of general purpose mi-
cro-protocols, a common protocol base can be established which can be used for the syn-
thesis of several application domain-specific multifunction protocols. In addition, multi-
function protocols composed from micro-protocols are easier to modify than their
monolithic counterparts.

A prerequisite for the effective use of micro-protocols is a proper understanding of the
interactions between these protocols. A service definition is an abstraction which facili-
tates a proper understanding of such interactions, even if the interacting parts are them-
selves composed of distributed entities. This is the case with protocols since they are com-
posed of cooperating protocol entities. In the Platinum design, each protocol has at least
two associated service definitions: the service provided to the users of the protocol, and
the service assumed from a lower level protocol. Additional service (or interface) defini-
tions may exist if ‘horizontal’ interactions are supported with other protocols. For exam-
ple, the control protocol of the shared whiteboard application has horizontal interactions
with the protocol of the conference management application.

5.2 Software structuring

Identification of reusable software is actively pursued in the Platinum design. By adopting
object-oriented technology, reuse can be supported at different levels and in different
forms. The principle of encapsulation in object-oriented software design is analogous to
that of service in protocol design. It enables understanding of components without having
to know their internals, and it facilitates modification of components without affecting the
rest of the system. The software architecture of the middleware in particular is designed
for reuse: it provides classes which can be specialized or extended in accordance to spe-
cific application domain requirements. The software architecture of the shared whiteboard
application illustrates some of the possible ways in which middleware software compo-
nents can be reused (see Figure 6).

Design patterns are structures and collaborations of components which have been
proven successful in some application domain (see [8]). Adopting design patterns during
the design process can be seen as an effective high level reuse of software solutions (in
this case, software architectures). The Platinum middleware design is based on the Model/
View/Controller design pattern. This design pattern has been originally identified in the
design of graphical user interfaces, but also proved to be effective in the middleware soft-
ware design process.

5.3 Middleware platforms

The Platinum middleware is not a true middleware according to the criteria mentioned in,
for example, [1]. The current middleware implementation, which has been coined the Me-
diaBuilder, only supports one operating system type (Windows NT) and one network type
(accessed via the TS-API, see Section 2). Future research, however, may address other op-
erating systems and networks. Hence, one of the first challenges which the Platinum de-



M. van Sinderen, P. Chimento, L. Ferreira Pires

sign has to face may well originate from the designers themselves, who want to extend the
support provided by the middleware.

The Platinum design distinguishes itself from other developments in two respects.
First, it builds on a multiparty network based on ATM technology. As far as we know
there are currently no commercial platforms for multimedia application development with
these characteristics. Second, the Platinum design is not limited to the client-server para-
digm. Therefore it also differs from developments such as, e.g., CORBA. The integration
of the Platinum design with frameworks such as OMG CORBA and ITU-T T.120 is in
principle possible and will be investigated in future.

References

[1] P. A. Bernstein. Middleware: a model for distributed system services. Communications of
the ACM, 39(2):86–98, Feb. 1996.

[2] G. Booch. Object-oriented analysis and design. The Benjamin-Cunnings Publishing Com-
pany, Inc, California, USA, second edition, 1994.

[3] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. MMConf: an infrastruc-
ture for building shared multimedia applications. In CSCW 90 Proceedings, pages 329–341,
Oct. 1990.

[4] D. Dolev and D. Malki. The Transis approach to high availability cluster communication.
Communications of the ACM, 39(4):64–70, Apr. 1996.

[5] A. Fekete, M. F. Kaashoek, and N. Lynch. Implementing sequentially consistent shared ob-
jects using broadcast and point-to-point communication. Technical Report MIT/LCS/TM-
518, Laboratory of Computer Science, Massachusetts Institute of Technology, Cambridge,
USA, June 1995.

[6] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papa-
dopoulos. Totem: a fault-tolerant multicast group communication system. Communications
of the ACM, 39(4):54–63, Apr. 1996.

[7] J. Palme and T. Tholerus. SuperKOM - design considerations for a distributed, highly struc-
tured computer conferencing system. Computer Communications, 15(8):509–516, Oct.
1992.

[8] D. C. Schmidt. Using design patterns to develop reusable object-oriented communication
software. Communications of the ACM, 38(10):65–74, Oct. 1995.

[9] H. J. Stuttgen. Network evolution and multimedia communication. IEEE Multimedia,
2(3):42–59, Fall 1995.

[10] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: a flexible group communication sys-
tem. Communications of the ACM, 39(4):76–83, Apr. 1996.

[11] K. Watabe, S. Sakata, K. Maeno, H. Fukuoka, and T. Ohmori. Distributed multiparty desk-
top conferencing system: MERMAID. In CSCW 90 Proceedings, pages 27–37, Oct. 1990.


