120 research outputs found

    PDB16 Prospective and Retrospective Safety Review of Pioglitazone in a Medical Center

    Get PDF

    The Impact of the Guide Vane on the BIWT System for the Distributed Wind Generation in the Urban Area

    Get PDF
    This paper reports a study on the impact of the guide vane on the Building Integrated Wind Turbine (BIWT) system for the distributed wind generation in the urban area. The guide vane is combined with the rotor to concentrate and accelerate the incoming wind to drive the turbine for power generation. The improved BIWT system has several advantages over the conventional BIWT system; it does not require the structural reinforcement of the building because it generates electricity based on the wind pressure acting on the building’s wall. Furthermore, the guide vane conceals the rotor from the view of pedestrians to maintain the aesthetic value of the building. The analysis focuses on the installation of the BIWT design at a high-rise building. The study evaluates the wind dynamics characteristic on the building’s wall using the computational fluid dynamics (CFD) software. Consequently, the producible power output is estimated based on the wind dynamics characteristic. The effectiveness of the BIWT with the guide vane is evaluated on the actual wind data measured at Kota Kinabalu, Sandakan and Kudat. The result shows that the guide vane increases the producible power output by 129.09%

    Task Switching and Single vs. Multiple Alarms for Supervisory Control of Multiple Robots

    Get PDF
    Foraging tasks, such as search and rescue or reconnaissance, in which UVs are either relatively sparse and unlikely to interfere with one another or employ automated path planning, form a broad class of applications in which multiple robots can be controlled sequen-tially in a round-robin fashion. Such human-robot systems can be described as a queuing sys-tem in which the human acts as a server while robots presenting requests for service are the jobs. The possibility of improving system performance through well-known scheduling tech-niques is an immediate consequence. Unfortunately, real human-multirobot systems are more complex often requiring operator monitoring and other ancillary tasks. Improving perfor-mance through scheduling (jobs) under these conditions requires minimizing the effort ex-pended monitoring and directing the operator’s attention to the robot offering the most gain. Two experiments investigating scheduling interventions are described. The first compared a system in which all anomalous robots were alarmed (Open-queue), one in which alarms were presented singly in the order in which they arrived (FIFO) and a Control condition without alarms. The second experiment employed failures of varying difficulty supporting an optimal shortest job first (SJF) policy. SJF, FIFO, and Open-queue conditions were compared. In both experiments performance in directed attention conditions was poorer than predicted. A possi-ble explanation based on effects of volition in task switching is propose

    Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms

    Get PDF
    Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the quantum trajectory method. A new method is developed for calculating the resonance fluorescence spectra from numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is responsible for quantum interference between the related transitions resulting in anomalous modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio

    The contents and forms of solid-phase species of radioactive strontium and cesium in Taiwan soils

    Get PDF
    This study was to investigate the activities and contents of Cs-137 in the profiles of selected arable and forest soils in Taiwan and various solid-phase species of Sr-85 and Cs-137 in selected arable soils in Taiwan. The gamma (gamma) ray spectra of the collected soil samples and some of the soils amended with Sr-85 and Cs-137 were measured. The data indicate that the arable soils from Sanhsing series, Sanhsing Township and Chuangwei series, Chuangwei Township, Ilan County, and from Tunglochuan series, Pinglin Township, Taipei County shows significantly higher radioactivity of Cs-137 ( ND - 11.0 +/- 0.2 Bq kg(-1)). Furthermore, the radioactivity of Cs-137 in the mountain soils ( 1.24 +/- 0.07 - 42 +/- 1 Bq kg(-1)) from Yuanyang Lake Nature Preserve among Ilan, Taoyuan, and Hsinchu Counties is the highest among the investigated mountain forest soils. This may be mainly attributed to the fact that Ilan County is located in the northeastern part of Taiwan and faces the northeastern and northern seasonal winds with lots of precipitation annually from mid-autumn through mid-spring next year and is receiving greater amount of fallouts yearly. Due to longer reaction period (> 3 y) of Cs-137 with soil components, Cs-137 was mainly in the forms bound to oxides and to organic matter in the soil amended with Cs-137 and in the soil contaminated with Cs-137. On the contrary, due to shorter reaction period (< 60 d) of Sr-85 with soil components, Sr-85 was mainly in exchangeable form and partially in the forms bound to carbonates and oxides in the soils amended with Sr-85

    On Using High-Definition Body Worn Cameras for Face Recognition from a Distance

    Get PDF
    Recognition of human faces from a distance is highly desirable for law-enforcement. This paper evaluates the use of low-cost, high-definition (HD) body worn video cameras for face recognition from a distance. A comparison of HD vs. Standard-definition (SD) video for face recognition from a distance is presented. HD and SD videos of 20 subjects were acquired in different conditions and at varying distances. The evaluation uses three benchmark algorithms: Eigenfaces, Fisherfaces and Wavelet Transforms. The study indicates when gallery and probe images consist of faces captured from a distance, HD video result in better recognition accuracy, compared to SD video. This scenario resembles real-life conditions of video surveillance and law-enforcement activities. However, at a close range, face data obtained from SD video result in similar, if not better recognition accuracy than using HD face data of the same range

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
    corecore