
Task Switching and Single vs. Multiple 
Alarms for Supervisory Control of Multiple 

Robots  
 

Michael Lewis1, *, Shi-Yi Chien1, Siddarth Me-
hortra2, Nilanjan Chakraborty2 and Katia Sycara2

 

 
1 University of Pittsburgh, School of Infor-

mation Sciences, Pittsburgh, PA 15260, USA 
ml@sis.pitt.edu, gsechien@gmail.com 

2 Carnegie Mellon University, Ro-
botics Institute, Pittsburgh, PA 15213, 

USA 
siddarthmehrotra11@gmail.com, 
{nilanjan, katia}@cs.cmu.edu 

 
Abstract. Foraging tasks, such as search and rescue or reconnaissance, in which UVs are 

either relatively sparse and unlikely to interfere with one another or employ automated path 
planning, form a broad class of applications in which multiple robots can be controlled sequen-
tially in a round-robin fashion.  Such human-robot systems can be described as a queuing sys-
tem in which the human acts as a server while robots presenting requests for service are the 
jobs.  The possibility of improving system performance through well-known scheduling tech-
niques is an immediate consequence.  Unfortunately, real human-multirobot systems are more 
complex often requiring operator monitoring and other ancillary tasks.  Improving perfor-
mance through scheduling (jobs) under these conditions requires minimizing the effort ex-
pended monitoring and directing the operator’s attention to the robot offering the most gain.  
Two experiments investigating scheduling interventions are described.  The first compared a 
system in which all anomalous robots were alarmed (Open-queue), one in which alarms were 
presented singly in the order in which they arrived (FIFO) and a Control condition without 
alarms.  The second experiment employed failures of varying difficulty supporting an optimal 
shortest job first (SJF) policy.  SJF, FIFO, and Open-queue conditions were compared.  In both 
experiments performance in directed attention conditions was poorer than predicted.  A possi-
ble explanation based on effects of volition in task switching is proposed.  
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1 Introduction 

In the simplest case of multirobot control, an operator controls  multiple  in-
dependent  robots  interacting  with each as needed. A foraging task [1] in which 
each robot searches its own region would be of this category. Control performance  
at  such  tasks  can  be  characterized  by  the average demand of each robot on hu-
man attention [2]. Such operator interactions with a robot might be described as a 
sequence of control episodes in which an operator interacts with  the  robot  for  pe-
riod  of  time  (interaction time, IT) raising its performance above some upper 
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threshold (UT) after  which the  robot  is  neglected for  a  period of time (neglect 
time, NT) until its performance deteriorates below a  lower  threshold  (LT)  when  
the  operator  must  again interact with it. In practice the operator’s task is even 
more complex.  Humans  are  additionally  included  in  robotic systems to perform 
tasks the automation cannot. The most common of these tasks is searching for targets 
in noisy displays such as remote video or aerial imagery. 

Research in robot self-reflection [3] has progressed to the point that it is plau-
sible to presume robots capable of reporting their own off normal conditions such 
as an inability to move or unsafe attitude. By focusing the operator’s attention on  
robots  needing  interaction rather than requiring the operator to monitor for the 
failures, time spent monitoring can be eliminated increasing the number of robots 
that can be serviced over the intervening interval. With robots informing the operator 
of their need for interaction the human-robot system becomes more like a queuing 
system in which the operator acts as the server and robot interaction requests as jobs. 
Using operations research methods the performance of such a queuing system might 
be further improved by prioritization of jobs or adjustment of service levels [4] to 
match current conditions. Deriving full benefit from such aiding, however, would 
require the ability to focus an operator’s attention on a particular robot.   We refer to 
the possibility that human attention might be closely directed in this manner without 
loss of cognitive efficiency as the attention scheduling hypothesis.   

Alarms are commonly used in complex human-machine systems to direct human 
attention but usually in an open and unrestrictive way.   Annunciator systems in nu-
clear power plants or aircraft cockpits typically alarm separately for each setpoint 
that has been exceeded allowing the human to prioritize and schedule attention 
among competing demands.    Human-multirobot tasks exert similar competing de-
mands on operators frequently requiring them to mix navigation, visual search, and 
status monitoring to accomplish their objectives.  If operators can manage their own 
attentional resources to avoid damaging interruptions and/or exploit common situa-
tional elements among tasks these advantages might outweigh benefits available 
from externally directed attention. 

Experiment I tests the attention scheduling hypothesis by comparing operators 
performing a multirobot foraging task without alarms for robot failures, with all 
alarms available (Open-queue), or with a first-in-first-out (FIFO) queue making only 
a single alarm available at a time.  Effects were measured for both the primary task 
of searching for and identifying victims and the secondary task of identifying and 
restoring failed robots.  Because all failures were of the same difficulty, the order in 
which they were serviced should make no difference so under the attention schedul-
ing hypothesis the FIFO and open alarm conditions should produce equivalent per-
formance. 

Experiment II extends the test to a condition under which the attention scheduling 
hypothesis would predict superior performance for directed attention.  The shortest 
job first (SJF) discipline is a provably optimal policy for maximizing throughput in a 
queuing system [5].  Using this policy to direct human attention, therefore, should 
lead to superior performance under the attention scheduling hypothesis providing the 
undirected operators did not follow precisely the same policy.  This experiment com-
pares  SFJ, FIFO, and Open-queue conditions with attention scheduling hypothesis 



 
 

predictions that SJF should produce the best performance followed by Open-queue 
provided that operators did better than random (FIFO) in selecting robots to be ser-
viced. 

2 Methods 

The reported experiments were conducted using the USARSim robotic simulation 
with simulated Pioneer P3-AT robots performing an Urban Search and Rescue 
(USAR) foraging task.  USARSim  is  a  high-fidelity  simulation  of  USAR robots 
and environments developed as a research tool for the study of human-robot interac-
tion (HRI) and multi-robot coordination. USARSim supports HRI by accurately ren-
dering user interface elements (particularly camera video), accurately representing 
robot automation and behavior, and accurately representing the remote environment 
that links the operator’s awareness with the robot’s behaviors. USARSim uses Epic 
Games’ UnrealEngine3 to provide a high fidelity simulator at low cost and also serves 
as the basis for the Virtual Robots Competition of the RoboCup Rescue League. Oth-
er sensors including sonar and audio are also accurately modeled. 

MrCS (Multi-robot Control System), a multi-robot communications and control in-
frastructure with accompanying user interface, developed for experiments in multi-
robot control and RoboCup competition [6] was used in these experiments. MrCS 
provides facilities for starting and controlling robots in the simulation, displaying 
multiple camera and laser output, and supporting inter-robot communication. 

 

 
Fig. 1.    MrCS Open-queue condition with status bar on left 

Figure 1 shows the MrCS user interface in the Open-queue alarm condition. 
Thumbnails of robot camera feeds are shown on the top, the currently selected video 
feed of interest in the bottom right. A GUI element in the middle right allows tele-
operation and camera pan and tilt. Current locations and paths of the robots are shown 
on the Map Viewer (middle) which also allows operators to mark victims. The team 



 
 

status window (left) for the Open-queue condition shows each robot’s current status 
and briefly summarizes any problem. Green indicates the robot is in autonomous con-
dition and functioning safely, yellow indicates an abnormal condition, such as stuck at 
a corner. When a robot is manually controlled, its tile turns white. The operator se-
lects the robot to be controlled from either the team status window or camera thumb-
nail. 

In forced queue conditions  robots  in abnormal states are presented one at a time. 
Additional alarms can only be reviewed after the presenting problem is resolved. To 
avoid “clogging” the status window with an unrecoverable failure, operators have an 
alternative in a “Dead” button. Once switched off, the robot will stop reporting and no 
longer be scheduled.  The status panel is removed in the Control condition requiring 
operators to monitor the Map Viewer and thumbnails to identify malfunctioning ro-
bots. 

When an operator detects a victim in a thumbnail, a complex sequence of actions is 
initiated. The operator first needs to identify the robot and select it to see the camera 
view in a larger window and to gain the ability to stop or teleoperate  the  robot.  After  
the  user  has  successfully selected a robot, it must be located on the map by match-
ing the window border color or numerical label. Next the operator must determine the 
orientation of the robot and its camera using cues such as prior direction of motion 
and matching landmarks between camera and map views. To gain this information the 
operator may choose to teleoperate the selected robot to locate it on the map, deter-
mine its orientation through observing the direction of movement, or simply to get a 
better viewing angle. The operator must then estimate  the  location  on  the  map  
corresponding  to  the victim in the camera view. If “another” victim is marked near-
by, the operator must decide whether the victim she is preparing to mark has already 
been recorded on the map. 

Detecting and restoring a failed robot follow a similar time course: identifying the 
failed robot on the map and selecting it, then teleoperating it to its next waypoint 
where the automation can resume control. 

The selected USAR environment was an office like hall with many rooms full of 
obstacles like chairs and desks. Victims were evenly distributed within the environ-
ment. Maps were rotated by 90º and each robot entered the environment from differ-
ent locations on each trial. Because the laser map is built up slowly as the environ-
ment is explored and the office like environment provides few distinctive landmarks, 
there was little opportunity for participants to benefit from prior exposure to the envi-
ronment. Robots  followed  predefined  paths  of waypoints, similar to paths generat-
ed by an autonomous path planner [7] to explore the map. All robots traveled paths of 
the same distance encountering the same number of victims and failures  in  each  
designed path.  Upon reaching a  failure point the operator needed to assume manual 
control to teleoperate the robot out of its predicament to its next waypoint where au-
tonomous exploration resumed. 



 
 

3 Experiment I 

Experiment I reported in [8] compared a Control condition without alarms with two 
alarm conditions: Open-queue in which all malfunctions were displayed on a status 
panel and FIFO which displayed alarms one at a time in the order in which they oc-
curred.  Because all failures were of the same difficulty the order in which they are 
serviced should make no difference so according to the attention scheduling hypothe-
sis the FIFO and open alarm conditions should produce equivalent performance.  The 
experiment followed a three condition repeated measures design comparing the con-
ventional MrCS displays with MrCS augmented by alarm panels. Conditions were 
fully counterbalanced for Map/starting points and display with 5 participants run in 
each of the six cells 

3.1 Participants and Procedure 

31 paid participants were recruited from the University of Pittsburgh community 
balanced among conditions for gender. None had prior experience with robot con-
trol although most were frequent computer users. Due to a system crash data was lost 
for one participant. 

After providing demographic data and completing a perspective taking test, partic-
ipants read standard instructions on how to control robots via MrCS. In the following 
15 minute training session, participants practiced control operations. Participants were 
encouraged to find and mark at least one victim in the training environment under 
the guidance of the experimenter. After the training session, participants began the 
first 15 minute experimental session in which they performed the search task control-
ling 6 robots in the first assigned condition. At the conclusion of the session partic-
ipants were asked to complete the NASA-TLX workload survey [9] . After brief 
breaks, the next two conditions were run accompanied by repeated workload surveys. 

3.2 RESULTS 
 

Data were analyzed using a repeated measures ANOVA comparing search and 
rescue performance between the control and the two alarmed displays. No difference 
was found on the overall performance measures areas covered (F1,29 = .488, p= 
.490), victims found (F1,29 = .294, p = .592), or NASA- TLX workload  survey 
(F1,29 = 2.557, p = .121).  Significant effects were found on measures relating to 
operator strategy and the ways they performed their tasks. 

Neglect time (NT) and latency in responding to failures are indicators of opera-
tor performance. Long NTs can indicate that some robots may have been ignored 
while latency in responding to failures can suggest noncompliance with assistance 
requests or heavy workload at other parts of the task. Robots in the FIFO condition 
were neglected longer than in the Control condition (p = .033, SD = 619.507) 
but did not differ  significantly from  the  Open-queue  condition.  The  neglect 
times were Open-queue= 1741, FIFO = 1887, and Control =1629 seconds. 



 
 

Fault Detection time was defined as the interval between the initiating failure 
and the selection of the robot involved in that event.  Cumulative Fault Detection 
times were significantly shorter for participants in the Alarm condition, p = .021, with 
a cumulative Fault Detection time of 933 seconds. Times for FIFO and Control con-
ditions were 1120, and 1210 seconds respectively. A pairwise T-test shows a signifi-
cant difference between t h e  Alarm and Control conditions (p = .021, SD = 
607.914). 

Victim Delay time was defined as the interval between when a victim first ap-
peared in a robot’s camera and the selection of that robot. Victim Delay time again 
differed across conditions with average times of Open-queue 1303, FIFO 1548,  
and  Control 1559 seconds.  A pairwise T-test shows differences between Open-
queue and FIFO (p= .041, SD =613.725), and Open-queue and Control conditions 
(p = .025, SD =578.945). 

A related measure, Select-to-Mark, is defined by the interval between selecting 
a robot with a victim in view and marking that victim on the map by the process 
described earlier.  Select to mark times can be interpreted as a measure of situation 
awareness (SA) because they require the operator to orient and interpret the envi-
ronment.  For this measure the results are reversed with users in the Open-queue 
condition taking the longest times (17.56 sec) and the Control the shortest (14.91 
sec) with the FIFO condition (16 sec) again falling in between.  There was no over-
all effect for select to mark time across the three experimental conditions 
(F(1.669,56) = 1.618, p = .212).   A pairwise  T-test,  however,  shows  a differ-
ence between Open-queue and Control conditions (p = .025, SD = 6.02). 

4 Experiment II 

Experiment II reported in [10] extended the investigation begun in Experiment I by 
introducing multiple types of failures to allow a condition for which the schedule-
aiding hypothesis would predict superior performance.  Serving the shortest job first 
(SJF) is a provably optimal policy for maximizing throughput in a queuing system 
[5].  An alarm system that displayed only the current failure with the shortest time to 
repair, therefore, should improve the performance of the human-multirobot system 
over the Open-queue condition unless the unaided human is also following the same 
SJF policy. 

4.1 Types of Failures 

Recoverable failures were categorized into 4 major types, based on the data for com-
monly occurring non terminal and field repairable failures for the Pioneer P3-AT [11]. 
Two of these, camera and map failures, involve loss of display due to communication 
difficulties. The third, teleoperation lag is a control problem found by [12] to signifi-
cantly degrade operator performance. The fourth, “stuck”, is a common condition in 
which a robot becomes entangled with obstacles. To resolve encountered failures, the 
operator needed to manually guide the robot from its current location to the next way-
point. Because each of the failure types imposed different difficulties for recovery, 



 
 

they took varying amounts of time to resolve.  In order to estimate typical resolution 
times for different failures, a pretest using 10 participants was conducted as shown in 
Table 1 and Figure 2. 

Table 1. Error Types 

Failure Description 

 
Stuck 

Robot  was  stopped  by  
 approaching obstacles 

Teleoperation 
Lagged 

Robot  executed  operator's   
command with 2~3 seconds delay 

Camera 
Sensor Failed 

Robot's video feed will be frozen 
 right before the failure happened 

Map Viewer 
Failed 

Robot's  position  on  the  map  
 viewer will be unable to update 

       Fig. 2. Time to repair 
 
In the training session, participants practiced control operations for different types of 
failures for 5 minutes each. Participants were instructed that their goal was to resolve 
failures by teleoperating to the next indicated waypoint as rapidly  as  possible.  To  
avoid  unrelated  delays,  such  as those associated with switching attention among 
robots, participants controlled a single designated robot at a time. Because teleoperat-
ing the robot to its next waypoint was most easily accomplished by locating both on 
the map, loss of map indication proved to be the lengthiest failure to repair.  The  
stuck  condition  which  required  extensive manual  maneuvering  and  the  camera  
failure  that  made obstacle avoidance more difficult were the easiest to overcome, 
with teleoperation delay falling in the middle. This ordering of estimated interaction 
times allowed failures to be presented to the operator in a priority queue following a 
shortest job first (SJF) discipline, known to maximize throughput [5]. 

4.2 Participants and Procedure 

The experiment followed a three condition repeated measures design comparing the 
MrCS augmented by a status panel (Open-queue) with presentation of single alarms 
following either a FIFO or SJF policy. Thirty paid participants  were  recruited  from  
the  University  of Pittsburgh community balanced among conditions for gender. 
None had prior experience with robot control although most were frequent computer 
users. Participants read standard instructions on how to control robots via MrCS. In 
the following 20 minute training session, 5 minutes for each type of failure, partici-
pants practiced control  operations  by  resolving failures,  three  times  for each type. 
Participants were encouraged to find and mark at least one victim in the training envi-
ronment under the guidance of the experimenter. After the training session, partici-
pants began the first 15 minute experimental session in which they performed the 
foraging task controlling 8 robots  in  their  first  assigned  condition. Participants had 



 
 

been told the main task was to locate victims with detecting and resolving robot fail-
ures as a secondary task. At the conclusion of the session, participants were asked to 
complete the NASA-TLX workload survey [9]. After brief breaks, the next two con-
ditions were run accompanied by repeated workload surveys. 

4.3 RESULTS 

Victims Found & Distance Traveled.  
No difference was found for the number of victims identified (F(2,58)=.110, 

p=.896). Each victim marking was compared to ground truth to determine whether 
there was actually a victim near the location. If a mark was made further than 2 me-
ters away from any victim or multiple marks for a single victim were found, the 
marks were counted as false positives. The number of false positives showed a main 
effect for queue condition (F(2,58)=4.637, p=.014). A pairwise T-test found a signif-
icant difference between Open-queue (1.13 false) and FIFO (2 false) conditions 
(p=.030), as well as a difference between SJF (1.2 false) and FIFO (p=.012). No dif-
ferences were found between Open-queue and SJF. 

Unmarked victims that had appeared within a robot’s FOV (field of view) without 
being marked were counted as false negatives (misses). Operators in the Open-queue 
condition missed the most victims (15) and FIFO the fewest (11) with SJF falling in 
between (13). A repeated measures ANOVA shows a main effect among queue 
conditions, F(2,58)=20.5, p<.001. Pairwise T-tests revealed differences between 
Open-queue and FIFO (p<.001), Open-queue and SJF (p=.006), and SJF and FIFO 
(p=.003). 

No difference was found for the distance traveled (F(2,58)=1.73, p=.186) alt-
hough Open-queue (321m) appears slightly better than FIFO (293m) with SJF again 
in the middle (310m). 

Neglect time (NT) and latency in responding to failures again served as indica-
tors of operator performance. Long NTs can indicate that some robots may have 
been ignored while latency in responding to failures can suggest noncompliance with 
assistance requests or heavy workload at other parts of the task. NT (F(2,58)=1.66, 
p=.20) and the latency in responding to failure (F(2,58)=1.75, p=.183) were not sig-
nificantly different among the three conditions. Pairwise T-tests found no difference 
between Open-queue and FIFO in either Neglect Time (p=.086) or fault detection 
time,  (p=.079) although Experiment I had found longer NT in the FIFO condition. 

The time to service failed robots, measured as the time between selecting the ro-
bot and resolving its problem again showed no difference among conditions 
(F(2,58)=.579, p=.507), which suggests the types of pre-designed failures were well 
distributed among three conditions. Overall, FIFO-queue appears slightly worse in 
the above three measurements. 

Select-to-Mark, is defined by the interval between selecting a robot with a victim 
in view and marking that victim on the map. Select to mark times can be interpreted 
as a measure of situation awareness (SA) because they require the operator to orient 
and interpret the environment. A  repeated  measures  ANOVA  shows  a  significant 
difference among conditions (F(2,58)=5.413, p=.011). Operators in  the   



 
 

FIFO condition took the longest time (583 sec) and the Open-queue was the 
shortest (389 sec) with the SJF falling in between (478 sec). A pairwise T-test 
showed a significant difference between Open-queue and FIFO conditions (p=.002), 
and   a   marginal   difference   between   Open-queue   and SJF (p=.061). 

The operator must successfully teleoperate the stopped robot from its current lo-
cation to the next predefined waypoint to resolve a failure. A repeated measures 
ANOVA showed a significant difference for the count of resolved failures among 
experimental conditions (F(2,58)=5.5, p=.006).  Participants in  the  Open-queue 
condition solved the most failures (17.8), which was significantly more than FIFO 
(p=.003). A pairwise T-test also revealed a difference between SJF, 17 failures, and 
FIFO 15.7 failures, (p=.057). 

As in Experiment I the full-scale NASA-TLX workload measure found no ad-
vantage among conditions. To examine effects related to the highly prescriptive aid-
ing in FIFO and SJF, we analyzed the frustration scale separately  Repeated measures 
ANOVA showed a significant difference (F(2,58)=5.159, p=.009). Pairwise T- tests 
revealed differences between Open-queue and FIFO (p=.038) and between Open-
queue and SJF (p=.004). 

5 Discussion 

In Experiment I we found that alerting operators to  robots  in  need  of  interac-
tion  improved  performance along a number of dimensions.  The study compared a 
control condition without alerting with experimental conditions corresponding to the 
Open-queue and FIFO conditions of Experiment II.  While alerting was beneficial, 
FIFO which directed the operator to service a particular robot was less effective than 
the Open-queue which allowed the operator to choose.   This contradicts the predic-
tions of the attention scheduling hypothesis which required that human attention be 
directed without loss of cognitive efficiency.  The advantage for less constrained op-
erators might be explained either by superiority of strategies of Open-queue operators 
when allowed choice or operator difficulties in complying with automation that pre-
scribed the robot to be serviced. 

Experiment II partially supported the premise that operator attention can be di-
rected to interaction with  individual  robots without degrading performance.  Open-
queue  performed  slightly better than SJF on false positives, distance traveled, and 
failures resolved, but only for select-to-mark times did the difference approach signif-
icance. For the primary task of marking victims, FIFO participants proved slightly 
better, however, SJF participants were significantly superior to Open-queue users 
yielding a balanced performance which was never poorest. The above results may be 
due to the differences in allocation of attention. Within limited cognitive capacity of 
processing information, operators have to selectively dedicate attention to any of the 
"wanted" targets and filter out the irrelevant information simultaneously  [16].  Open-
queue  operators  must  devote time and attention to monitoring and selection of ro-
bots for servicing as well as the interaction leaving less available for the victim moni-
toring and marking tasks; whereas operators in the forced queue (Priority-/FIFO-



 
 

Queue) conditions, by contrast, do not have to compete with monitoring and selecting 
robots to service leaving more resources available for victim-related tasks, which 
leads to the reversed results in unmarked victims among three conditions. 

The FIFO-queue condition which directed operator attention suboptimally also led 
to the greatest loss of SA as reflected in its longest Select-to-Mark victims times and 
lowest marking accuracy. This may have been exacerbated by the FIFO discipline 
which did not distinguish between distracting recoveries such as loss of track on map 
and brief interventions such as maneuvering around an obstacle. For the Priority-
queue, the SJF discipline had not only the advantage  of  allowing  operators  to  work  
primarily  on briefer interventions thereby preserving SA, but by clustering similar 
types of failures increased opportunities for reducing the cost to switch between re-
covery strategies and   sharing   the   similar   cognitive   procedures   among failures. 
However, the Priority-queue operators may have simply devoted more of their time 
and attention to robot requests  than  operators  using  the  less  efficient  FIFO be-
cause of their greater payoff, which could be observed from the higher rate of un-
marked victims. 

Table 2 summarizes effects from the two studies.  Performance on the primary vic-
tim detection and marking task was poorest in the Open-queue condition with more 
misses and fewer false alarms suggesting operators may have been devoting less ef-
fort to this task.  When they did see a victim, however, they were faster to select the 
robot and mark the victim then those using priority queues indicating better situation 
awareness.  This advantage extended to the secondary task where Open-queue users 
were faster to address and resolve faults.  The performance improvements came at 
some cost, however, as indicated by the elevated frustration scale of the workload 
measure.  

  Taken together these experiments fail to confirm the attention scheduling hypoth-
esis as the FIFO and SJF interfaces that dictated the malfunctioning robot to be ser-
viced led to decreased cognitive efficiency as reflected in poorer performance in di-
rect comparisons.  Two possible explanations are that: 1) lack of volition in choice of 
robot to service led to inefficiencies due to task switching [13] and loss of situation 
awareness due to shifts of attention to potentially remote locations or 2) characteris-
tics of the priority queue conflicted with operator’s intentions leading to disuse [14] 
and hence poorer performance. 

In forced queue conditions operators receive an explicit recommendation  for  the  
robot  to  assist.  Under  extreme stress or time pressured tasks, humans tend to defer 
to automation and rely on the system for making decisions [15]. This increased com-
pliance under high workload could be especially beneficial to system performance 
where optimal strategies such as SJF can be used to steer operator attention. Although 
automated aids can reduce decisional load, they carry little additional information 
about other robots in  need  of  assistance or  the  general state  of the system. Opera-
tors therefore need to regain SA every time they switch to serve a new robot. While 
working from a forced queue, operators must match the alarmed robots to the thumb-
nails and/or maps, which could increase the cost in switching attention among failures 
and robots. 



 
 

Table 2.   Summary of Effects 

  
 Experiment I Experiment II Effects 
Primary Task Performance Measures 
Area Covered No Effect No Effect No Effect 
N of Victims 

Found 
No Effect No Effect No Effect 

False Posi-
tives 

Not Tested FIFO > (Open, 
SJF) 

FIFO > (Open, SJF) 

Misses Not Tested Open > SJF > 
FIFO 

Open > SJF > FIFO 

Victim Delay 
Time 

Open < (Con-
trol, FIFO) 

Not Tested Open < (Control, 
FIFO) 

Select to 
Mark Time 

Open < Control Open < (SJF, 
FIFO) 

Open <  (SJF, FIFO, 
Control) 

Secondary Task Performance Measures 
Failures Re-

solved 
Not Tested (Open, SJF) > 

FIFO 
(Open, SJF) > FIFO 

Fault Detec-
tion Time 

Open < Control  Open < Control 

Full Task 
Neglect Time FIFO > Control No Effect FIFO > Control 
NASA-TLX 

Workload 
No Effect No Effect No Effect 

Frustration 
Subscale 

Not Tested Open > (FIFO, 
SJF) 

Open > (FIFO, SJF) 

 
The study results are promising for the prospects of improving HRI performance 

through scheduling operator attention. The improvement of performance in queuing 
discipline shows that forced queue aiding can be effectively used by operators and 
might even lead to superior performance under more complex conditions where 
choice among robot requests becomes more difficult. 
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