654 research outputs found

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at s= \sqrt{s}= 13 TeV

    No full text
    A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t~1 \tilde{\mathrm{t}}_{1} ), is presented. The search targets the four-body decay of the t~1 \tilde{\mathrm{t}}_{1} , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10 \tilde{\chi}_{1}^{0} ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1 ^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t~1) m(\tilde{\mathrm{t}}_{1}) and m(χ~10) m(\tilde{\chi}_{1}^{0}) . The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t~1)m(χ~10)= m(\tilde{\mathrm{t}}_{1}) - m(\tilde{\chi}_{1}^{0}) = 10 and 80 GeV, respectively.A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t1 {\overset{\sim }{\textrm{t}}}_1 ), is presented. The search targets the four-body decay of the t1 {\overset{\sim }{\textrm{t}}}_1 , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ10 {\overset{\sim }{\chi}}_1^0 ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1^{−1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t1 {\overset{\sim }{\textrm{t}}}_1 ) and m(χ10 {\overset{\sim }{\chi}}_1^0 ). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t1 {\overset{\sim }{\textrm{t}}}_1 ) − m(χ10 {\overset{\sim }{\chi}}_1^0 ) = 10 and 80 GeV, respectively.[graphic not available: see fulltext]A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t~1\tilde{\mathrm{t}}_1), is presented. The search targets the four-body decay of the t~1\tilde{\mathrm{t}}_1, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10\tilde{\chi}^0_1), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t~1)m(\tilde{\mathrm{t}}_1) and m(χ~10)m(\tilde{\chi}^0_1). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t~1)m(χ~10m(\tilde{\mathrm{t}}_1) - m(\tilde{\chi}^0_1) = 10 and 80 GeV, respectively

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s \sqrt{s} = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb1^{−1}. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred μm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD_{D}, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD_{D}) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD_{D}) (varying with m(ZD_{D})) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.[graphic not available: see fulltext

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb1^{−1}. Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT \textrm{T}\overline{\textrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB \textrm{B}\overline{\textrm{B}} production with B quark decays to tW.[graphic not available: see fulltext

    Search for CPCP violation in ttH and tH production in multilepton channels in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the tt \overline{\textrm{t}} H and tH associated production, using 138 fb1^{−1} of data collected in proton-proton collisions at s \sqrt{s} = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H → ττ and the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of CP -even from CP -odd scenarios. Two-dimensional confidence regions are set on κt_{t} and κt \overset{\sim }{\kappa } _{t}, which are respectively defined as the CP -even and CP -odd top-Higgs Yukawa coupling modifiers. No significant fractional CP -odd contributions, parameterized by the quantity |fCPHtt {f}_{CP}^{\textrm{Htt}} | are observed; the parameter is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H → ZZ and H → γγ decay modes, yielding two- and one-dimensional confidence regions on κt_{t} and κt \overset{\sim }{\kappa } _{t}, while |fCPHtt {f}_{CP}^{\textrm{Htt}} | is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.28 with an interval of |fCPHtt {f}_{CP}^{\textrm{Htt}} | < 0.55 at 68% confidence level, in agreement with the standard model CP -even prediction of |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.[graphic not available: see fulltext

    Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    A search for a charged Higgs boson H~±{\mathrm{\tilde{H}^{\pm}}} decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016-2018 at s=\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H~±{\mathrm{\tilde{H}^{\pm}}} in the mass range of 300-700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H~±{\mathrm{\tilde{H}^{\pm}}} mass of 300 GeV to 0.019 pb for a mass of 700 GeV. These are the first limits on H~±{\mathrm{\tilde{H}^{\pm}}} production in the H~±HW±{\mathrm{\tilde{H}^{\pm}}} \to \mathrm{H} \mathrm{W^{\pm}} decay channel at the LHC.A search for a charged Higgs boson H±^{±} decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016–2018 at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H±^{±} in the mass range of 300–700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H±^{±} mass of 300 Ge V to 0.019 pb for a mass of 700 GeV. These are the first limits on H±^{±} production in the H±^{±}→ HW±^{±} decay channel at the LHC.[graphic not available: see fulltext]A search for a charged Higgs boson H±^\pm decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016-2018 at s\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H±^\pm in the mass range of 300-700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H±^\pm mass of 300 GeV to 0.019 pb for a mass of 700 GeV. These are the first limits on H±^\pm production in the H±^\pm \to HW±^\pm decay channel at the LHC

    Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    Results are presented from a search for the Higgs boson decay H\toZγ\gamma, where Z+\to\ell^+\ell^- with \ell = e or μ\mu. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength μ\mu, defined as the product of the cross section and the branching fraction [σ(\sigma(pp\toH)B()\mathcal{B}(H\toZγ)\gamma)] relative to the standard model prediction, is extracted from a simultaneous fit to the +γ\ell^+\ell^-\gamma invariant mass distributions in all categories and is found to be μ\mu=2.4±\pm0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to σ(\sigma(pp\toH)B()\mathcal{B}(H\toZγ)\gamma) = 0.21±\pm0.08 pb. The observed (expected) upper limit at 95% confidence level on μ\mu is 4.1 (1.8). The ratio of branching fractions B(\mathcal{B}(H\toZγ)/B(\gamma)/\mathcal{B}(Hγγ)\to\gamma\gamma) is measured to be 1.50.6+0.7^{+0.7}_{-0.6}, which agrees with the standard model prediction of 0.69 ±\pm 0.04 at the 1.5 standard deviation level
    corecore