39 research outputs found

    Primitive decompositions of Johnson graphs

    Get PDF
    A transitive decomposition of a graph is a partition of the edge set together with a group of automorphisms which transitively permutes the parts. In this paper we determine all transitive decompositions of the Johnson graphs such that the group preserving the partition is arc-transitive and acts primitively on the parts.Comment: 35 page

    Bicuspid and unicuspid aortic valves: Different phenotypes of the same disease? Insight from the GenTAC Registry

    Full text link
    BackgroundUnicuspid aortic valve (UAV) is a rare disorder, often difficult to distinguish from bicuspid aortic valve (BAV). BAV and UAV share valve pathology such as the presence of a raphe, leaflet fusion, aortic stenosis, aortic regurgitation, and/or ascending aortic dilatation, but a comprehensive echocardiographic comparison of patients with UAV and BAV has not been previously performed.MethodsWe investigated UAV and BAV patients at an early stage of disease included in GenTAC, a national registry of genetically related aortic aneurysms and associated cardiac conditions. Clinical and echocardiographic data from the GenTAC Registry were compared between 17 patients with UAV and 17 matched‐controls with BAV.ResultsBaseline characteristics including demographics, clinical findings including family history of BAV and aortic aneurysm/coarctation, and echocardiographic variables were similar between BAV and UAV patients; aortic stenosis was more common and more severe in patients with UAV. This was evidenced by higher mean and peak gradient, smaller aortic valve area, and more advanced valvular degeneration (all P < .05). There were no significant differences in aortic dimensions, with a similar pattern of enlargement of the ascending aorta.ConclusionsThe similar baseline characteristics with more accelerated aortic valve degeneration and stenosis suggest that UAV represents an extreme in the spectrum of BAV syndromes. Therefore, it is reasonable to consider application of recommendations for the management of patients with BAV to those with the rarer UAV.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139976/1/chd12520.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139976/2/chd12520_am.pd

    GenTAC registry report: Gender differences among individuals with genetically triggered thoracic aortic aneurysm and dissection

    Full text link
    Previous data suggest women are at increased risk of death from aortic dissection. Therefore, we analyzed data from the GenTAC registry, the NIH‐sponsored program that collects information about individuals with genetically triggered thoracic aortic aneurysms and cardiovascular conditions. We performed cross‐sectional analyses in adults with Marfan syndrome (MFS), familial thoracic aortic aneurysm or dissection (FTAAD), bicuspid aortic valve (BAV) with thoracic aortic aneurysm or dissection, and subjects under 50 years of age with thoracic aortic aneurysm or dissection (TAAD <50 years). Women comprised 32% of 1,449 subjects and were 21% of subjects with BAV, 34% with FTAAD, 22% with TAAD <50 years, and 47% with MFS. Thoracic aortic dissections occurred with equal gender frequency yet women with BAV had more extensive dissections. Aortic size was smaller in women but was similar after controlling for BSA. Age at operation for aortic valve dysfunction, aneurysm or dissection did not differ by gender. Multivariate analysis (adjusting for age, BSA, hypertension, study site, diabetes, and subgroup diagnoses) showed that women had fewer total aortic surgeries (OR = 0.65, P  < 0.01) and were less likely to receive angiotensin converting enzyme inhibitors (ACEi; OR = 0.68, P  < 0.05). As in BAV, other genetically triggered aortic diseases such as FTAAD and TAAD <50 are more common in males. In women, decreased prevalence of aortic operations and less treatment with ACEi may be due to their smaller absolute aortic diameters. Longitudinal studies are needed to determine if women are at higher risk for adverse events. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97193/1/35836_ftp.pd

    Proceedings from the Turner Resource Network symposium: The crossroads of health care research and health care delivery

    Get PDF
    Turner syndrome, a congenital condition that affects ∼1/2,500 births, results from absence or structural alteration of the second sex chromosome. There has been substantial effort by numerous clinical and genetic research groups to delineate the clinical, pathophysiological, cytogenetic, and molecular features of this multisystem condition. Questions about the molecular-genetic and biological basis of many of the clinical features remain unanswered, and health care providers and families seek improved care for affected individuals. The inaugural “Turner Resource Network (TRN) Symposium” brought together individuals with Turner syndrome and their families, advocacy group leaders, clinicians, basic scientists, physician-scientists, trainees and other stakeholders with interest in the well-being of individuals and families living with the condition. The goal of this symposium was to establish a structure for a TRN that will be a patient-powered organization involving those living with Turner syndrome, their families, clinicians, and scientists. The TRN will identify basic and clinical questions that might be answered with registries, clinical trials, or through bench research to promote and advocate for best practices and improved care for individuals with Turner syndrome. The symposium concluded with the consensus that two rationales justify the creation of a TRN: 1. inadequate attention has been paid to the health and psychosocial issues facing girls and women who live with Turner syndrome; 2. investigations into the susceptibility to common disorders such as cardiovascular or autoimmune diseases caused by sex chromosome deficiencies will increase understanding of disease susceptibilities in the general population.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 1R13HD079209-01)March of Dimes Birth Defects FoundationAmerican Heart AssociationNational Institutes of Health (U.S.) Office of Women's HealthLeaping Butterfly MinistryTurner Syndrome Society of the United State

    Development and validation of the Arizona Cognitive Test Battery for Down syndrome

    Get PDF
    Neurocognitive assessment in individuals with intellectual disabilities requires a well-validated test battery. To meet this need, the Arizona Cognitive Test Battery (ACTB) has been developed specifically to assess the cognitive phenotype in Down syndrome (DS). The ACTB includes neuropsychological assessments chosen to 1) assess a range of skills, 2) be non-verbal so as to not confound the neuropsychological assessment with language demands, 3) have distributional properties appropriate for research studies to identify genetic modifiers of variation, 4) show sensitivity to within and between sample differences, 5) have specific correlates with brain function, and 6) be applicable to a wide age range and across contexts. The ACTB includes tests of general cognitive ability and prefrontal, hippocampal and cerebellar function. These tasks were drawn from the Cambridge Neuropsychological Testing Automated Battery (CANTAB) and other established paradigms. Alongside the cognitive testing battery we administered benchmark and parent-report assessments of cognition and behavior. Individuals with DS (n = 74, ages 7–38 years) and mental age (MA) matched controls (n = 50, ages 3–8 years) were tested across 3 sites. A subsample of these groups were used for between-group comparisons, including 55 individuals with DS and 36 mental age matched controls. The ACTB allows for low floor performance levels and participant loss. Floor effects were greater in younger children. Individuals with DS were impaired on a number ACTB tests in comparison to a MA-matched sample, with some areas of spared ability, particularly on tests requiring extensive motor coordination. Battery measures correlated with parent report of behavior and development. The ACTB provided consistent results across contexts, including home vs. lab visits, cross-site, and among individuals with a wide range of socio-economic backgrounds and differences in ethnicity. The ACTB will be useful in a range of outcome studies, including clinical trials and the identification of important genetic components of cognitive disability

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Recent Advances in Placenta–Heart Interactions

    No full text
    Congenital heart defects (CHD) occur in ∼1 in every 100 live births. In addition, an estimated 10% of fetal loss is due to severe forms of CHD. This makes heart defects the most frequently occurring birth defect and single cause of in utero fatality in humans. There is considerable evidence that CHD is heritable, indicating a strong contribution from genetic risk factors. There are also known external environmental exposures that are significantly associated with risk for CHD. Hence, the majority of CHD cases have long been considered to be multifactorial, or generally caused by the confluence of several risk factors potentially from genetic, epigenetic, and environmental sources. Consequently, a specific cause can be very difficult to ascertain, although patterns of associations are very important to prevention. While highly protective of the fetus, the in utero environment is not immune to insult. As the conduit between the mother and fetus, the placenta plays an essential role in maintaining fetal health. Since it is not a fully-formed organ at the onset of pregnancy, the development of the placenta must keep pace with the growth of the fetus in order to fulfill its critical role during pregnancy. In fact, the placenta and the fetal heart actually develop in parallel, a phenomenon known as the placenta–heart axis. This leaves the developing heart particularly vulnerable to early placental insufficiency. Both organs share several developmental pathways, so they also share a common vulnerability to genetic defects. In this article we explore the coordinated development of the placenta and fetal heart and the implications for placental involvement in the etiology and pathogenesis of CHD
    corecore