270 research outputs found
Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials
BACKGROUND: Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. RESULTS: The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25-35 Hz) and to a lesser extent of 80 Hz oscillation. After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25-35 Hz) peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. CONCLUSION: The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice
Objective: To study the toxicity and activity of two new amphotericin B formulations: poly(ε-caprolactone)
nanospheres coated with poloxamer 188 (AmB-NP) and mixed micelles with the same surfactant (AmB-MM).
Materials and methods: The toxicity of these formulations was evaluated in erythrocytes, J774.2 macrophages
and LLCPK1 renal cells, as well as in mice. Activity was determined in clinical isolates and in neutropenic
mice. Mice were made neutropenic with 5-fluorouracil, infected with Candida albicans and treated
with the antifungal formulations for three consecutive days. AmB association in cells and accumulation in
kidneys and liver of animals was quantified by HPLC.
Results: Both formulations decreased between 8- and 10-fold the MIC of the polyene against clinical isolates
of C. albicans. However, their activity was lower than or equal to that of AmB-deoxycholate when it was
assessed against C. albicans-infected macrophages. When given as a single intravenous dose in mice,
AmB-MM and AmB-NP had an LD50 of 9.8 and 18.6 mg/kg, respectively, compared with 4 mg/kg for AmBdeoxycholate.
Comparison of residual infection burdens in the liver and kidneys showed that AmB-deoxycholate
(0.5 mg/kg) was more effective and faster in eradicating yeast cells than polymeric formulations.
This fact can be related to a lower AmB accumulation inside macrophages and in liver and kidneys (about 1.5
mg drug/g tissue) of mice, compared with those detected for AmB-deoxycholate (4 mg drug/g). Overall, the
efficacy of these formulations at 2 mg/kg was equal to that of AmB-deoxycholate at 0.5 mg/kg.
Conclusions: AmB-MM and AmB-NP decreased the in vivo antifungal activity of AmB, and higher concentrations
were therefore necessary to obtain a similar therapeutic effect. However, these higher concentrations
were achievable owing to the reduced toxicity of these formulations
Distinct multi-joint control strategies in spastic diplegia associated with prematurity or Angelman syndrome
Spastic diplegia is commonly due to periventricular leucomalacia associated with premature birth. It is also a feature of Angelman syndrome (AS), a neurogenetic disorder with developmental delay, absent speech and mirthful behaviour. We studied the kinematics and kinetics of the squatting movement and associated electromyographic (EMG) activities in 20 children with spastic diplegia associated with periventricular leucomalacia (SDPL) or AS and 18 unimpaired children. While movement of normal subjects consisted of vertical translation of most body segments, the movement of SDPL children was operated around the fixed knee with backward shift of the hip, and AS children performed a forward flexion of the trunk over the thigh. Trunk stability was correlated with movement velocity in both pathological groups. In normal subjects, anticipatory EMG pattern consisted of silencing of hamstring muscle tonic activity prior to movement onset. This deactivation was not present in spastic diplegia. In SDPL, anticipatory overactivation of ankle joint actuators was recorded and tonic co-contraction persisted throughout the movement. In AS, rhythmic EMG bursting was seen during the movement. Shoulder, hip and knee trajectories in the sagittal plane showed marked within-group stereotypies in orientation, shape and length. The patterns in both pathological groups were therefore distinctive. We speculate that they reflect corticospinal impairment in SDPL and combined corticospinal and cerebellar dysfunction in AS.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation
Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs). Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG), upper limb electromyogram (EMG), or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs) or dynamic recurrent neural networks (DRNNs). Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy
Sensory Stimulation-Dependent Plasticity in the Cerebellar Cortex of Alert Mice
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber–PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum
Marine Isotope Stage 4 (71–57 ka) on the Western European margin: Insights to the drainage and dynamics of the Western European Ice Sheet
Marine Isotope Stage (MIS) 4 (ca. 71–57 ka; within the Middle Weichselian Substage) is considered a significant Pleistocene glaciation, but it remains poorly constrained in comparison to that of the Late Weichselian Last Glacial Maximum (LGM; ca. 29–19 ka, during MIS 2), or even the Late Saalian MIS 6 (ca. 190–130 ka). Most MIS 4 glacial landforms in Europe were erased by the more extensive LGM ice advance, precluding a robust reconstruction of its extent and dynamic through time. Marine sedimentary archives, in preserving the source-to-sink sediment transfer signals of ice-sheet and glacier processes, help to bridge this gap. Here, the signals west of the European Ice Sheet (EIS) are tracked for MIS 4 from the deep Bay of Biscay (NE Atlantic), which was the outlet for Fennoscandian Ice Sheet (FIS) sediment-laden meltwater during extensive glaciations, specifically when the British-Irish Ice Sheet (BIIS) and the FIS coalesced into the North Sea (as during MIS 6 and the LGM). Sedimentological, geochemical, and mineralogical proxies reveal the absence of FIS-derived material in Bay of Biscay sediment throughout MIS 4, which indicates that FIS meltwater and huge river systems from the North European Plain never drained into the Bay of Biscay at that time. This suggests that contrary to MIS 6 and the LGM, the BIIS and FIS were not likely large enough to coalesce and form a (grounded) ice bridge onto the North Sea, thus confirming geomorphic evidence for a significant, but relatively limited, glaciation in Europe during MIS 4. Closer to the Bay of Biscay, ice-marginal fluctuations of the BIIS are identified in the Celtic-Irish Sea region from the deep-sea record. More specifically, our findings suggest an early retreat of the Irish Sea Ice Stream as soon as ca. 68–65 ka, a few millennia before the demise of the EIS, and the Northern Hemisphere ice sheets as a whole, during Heinrich Stadial (HS) 6. This pattern is similar to that already recorded during MIS 2. Finally, this study reveals that the MIS 4 period in Western Europe corresponds, as for MIS 2, to a complex combination of general ice advance interspersed by preliminary-to-final EIS demises highlighted by HS conditions
Preparedness and Response to Pediatric COVID-19 in European Emergency Departments : A Survey of the REPEM and PERUKI Networks
Publisher Copyright: © 2020 American College of Emergency Physicians Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Study objective: We aim to describe the variability and identify gaps in preparedness and response to the coronavirus disease 2019 pandemic in European emergency departments (EDs) caring for children. Methods: A cross-sectional point-prevalence survey was developed and disseminated through the pediatric emergency medicine research networks for Europe (Research in European Pediatric Emergency Medicine) and the United Kingdom and Ireland (Paediatric Emergency Research in the United Kingdom and Ireland). We aimed to include 10 EDs for countries with greater than 20 million inhabitants and 5 EDs for less populated countries, unless the number of eligible EDs was less than 5. ED directors or their delegates completed the survey between March 20 and 21 to report practice at that time. We used descriptive statistics to analyze data. Results: Overall, 102 centers from 18 countries (86% response rate) completed the survey: 34% did not have an ED contingency plan for pandemics and 36% had never had simulations for such events. Wide variation on personal protective equipment (PPE) items was shown for recommended PPE use at pretriage and for patient assessment, with 62% of centers experiencing shortage in one or more PPE items, most frequently FFP2 and N95 masks. Only 17% of EDs had negative-pressure isolation rooms. Coronavirus disease 2019–positive ED staff was reported in 25% of centers. Conclusion: We found variation and identified gaps in preparedness and response to the coronavirus disease 2019 epidemic across European referral EDs for children. A lack in early availability of a documented contingency plan, provision of simulation training, appropriate use of PPE, and appropriate isolation facilities emerged as gaps that should be optimized to improve preparedness and inform responses to future pandemics.publishersversionPeer reviewe
Resonant nonlinear magneto-optical effects in atoms
In this article, we review the history, current status, physical mechanisms,
experimental methods, and applications of nonlinear magneto-optical effects in
atomic vapors. We begin by describing the pioneering work of Macaluso and
Corbino over a century ago on linear magneto-optical effects (in which the
properties of the medium do not depend on the light power) in the vicinity of
atomic resonances, and contrast these effects with various nonlinear
magneto-optical phenomena that have been studied both theoretically and
experimentally since the late 1960s. In recent years, the field of nonlinear
magneto-optics has experienced a revival of interest that has led to a number
of developments, including the observation of ultra-narrow (1-Hz)
magneto-optical resonances, applications in sensitive magnetometry, nonlinear
magneto-optical tomography, and the possibility of a search for parity- and
time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002,
Figure added, typos corrected, text edited for clarit
- …