15 research outputs found

    Geminate recombination of electrons generated by above-the-gap (12.4 eV) photoionization of liquid water

    Full text link
    The picosecond geminate recombination kinetics for hydrated electrons generated by 200 nm two photon absorption (12.4 eV total energy) has been measured in both light and heavy water. The geminate kinetics are observed to be almost identical in both H2O and D2O. Kinetic analysis based upon the independent reaction time approximation indicates that the average separation between the electron and its geminate partners in D2O is 13% narrower than in H2O (2.1 nm vs. 2.4 nm). These observations suggest that, even at this high ionization energy, autoionization of water competes with direct ionization.Comment: 10 pages + 2 figures, submitted to Chem. Phys. Letter

    Synthesis and activity of novel glutathione analogues containing an urethane backbone linkage

    No full text
    The new GSH analogues H-Glo(-Ser-Gly-OH)-OH (5), its O-benzyl derivative 4, and H-Glo(-Asp-Gly-OH)-OH (9), characterized by the replacement of central cysteine with either serine or aspartic acid, and containing an urethanic fragment as isosteric substitution of the scissile γ-glutamylic junction, have been synthesized and characterized. Their ability to inhibit human GST P1-1 (hGST P1-1) in comparison with H-Glu(-Ser-Gly-OH)-OH and H-Glu(-Asp-Gly-OH)-OH, which are potent competitive inhibitors of rat GST 3-3 and 4-4, has been evaluated. In order to further investigate the effect of the isosteric substitution on the binding abilities of the new GSH analogues 4, 5 and 9, the previously reported cysteinyl-containing analogue H-Glo(-Cys-Gly-OH)-OH has been also evaluated as a co-substrate for hGSTP1-1. © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved
    corecore