5 research outputs found

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.This meta-analysis was financed by the grant of the Polish National Science Centre (Narodowe Centrum Nauki) (no. 2017/27/B/NZ8/00465) awarded to Lucyna Hałupka.Peer reviewe

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    Debris flows triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan)

    No full text
    One of the most far-reaching glacier-related hazards inthe Tian Shan Mountains of Kyrgyzstan is glacial lake outburstfloods (GLOFs) and related debris flows. An improved under-standing of the formation and evolution of glacial lakes and debrisflow susceptibility is therefore essential to assess and mitigatepotential hazards and risks. Non-stationary glacier lakes may fillperiodically and quickly; the potential for them to outburst in-creases as water volume may change dramatically over very shortperiods of time. After the outburst or drainage of a lake, the entireprocess may start again, and thus these non-stationary lakes are ofparticular importance in the region. In this work, the Teztor lakecomplex, located in Northern Kyrgyzstan, was selected for theanalysis of outburst mechanisms of non-stationary glacial lakes,their formation, as well as the triggering of flows and developmentof debris flows and floods downstream of the lakes. The differentTeztor lakes are filled with water periodically, and according tofield observations, they tend to outburst every 9–10 years onaverage. The most important event in the area dates back to1953, and another important event occurred on July 31, 2012. Othersmaller outbursts have been recorded as well. Our study showsthat the recent GLOF in 2012 was caused by a combination ofintense precipitation during the days preceding the event and arapid rise in air temperatures. Analyses of features in the entrain-ment and depositional zones point to a total debris flow volume ofabout 200,000 m3, with discharge ranging from 145 to 340 m3s−1and flow velocities between 5 and 7 m s−1. Results of this study arekey for a better design of sound river corridor planning and for theassessment and mitigation of potential GLOF hazards and risks inthe region

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few stud-ies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro-ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    The effect of climate change on avian offspring production:a global meta-analysis

    No full text
    Abstract Climate change affects timing of reproduction in many bird species, but few stud-ies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro-ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young
    corecore