69 research outputs found

    Reduced chemical shift-induced phase errors at 3T using novel PC-MRI encoding gradients

    Get PDF

    Towards comprehensive assessment of mitral regurgitation using cardiovascular magnetic resonance

    Get PDF
    Cardiovascular magnetic resonance (CMR) is increasingly used to assess patients with mitral regurgitation. Its advantages include quantitative determination of ventricular volumes and function and the mitral regurgitant fraction, and in ischemic mitral regurgitation, regional myocardial function and viability. In addition to these, identification of leaflet prolapse or restriction is necessary when valve repair is contemplated. We describe a systematic approach to the evaluation of mitral regurgitation using CMR which we have used in 149 patients with varying etiologies and severity of regurgitation over a 15 month period

    Design and validation of Segment - freely available software for cardiovascular image analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format.</p> <p>Results</p> <p>Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page <url>http://segment.heiberg.se</url>.</p> <p>Conclusions</p> <p>Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.</p

    Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology

    Get PDF
    This paper aims to provide information and explanations regarding the clinically relevant options, strengths, and limitations of cardiovascular magnetic resonance (CMR) in relation to adults with congenital heart disease (CHD). Cardiovascular magnetic resonance can provide assessments of anatomical connections, biventricular function, myocardial viability, measurements of flow, angiography, and more, without ionizing radiation. It should be regarded as a necessary facility in a centre specializing in the care of adults with CHD. Also, those using CMR to investigate acquired heart disease should be able to recognize and evaluate previously unsuspected CHD such as septal defects, anomalously connected pulmonary veins, or double-chambered right ventricle. To realize its full potential and to avoid pitfalls, however, CMR of CHD requires training and experience. Appropriate pathophysiological understanding is needed to evaluate cardiovascular function after surgery for tetralogy of Fallot, transposition of the great arteries, and after Fontan operations. For these and other complex CHD, CMR should be undertaken by specialists committed to long-term collaboration with the clinicians and surgeons managing the patients. We provide a table of CMR acquisition protocols in relation to CHD categories as a guide towards appropriate use of this uniquely versatile imaging modality

    Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography

    Get PDF
    International audienceBACKGROUND: Early detection of diastolic dysfunction is crucial for patients with incipient heart failure. Although this evaluation could be performed from phase-contrast (PC) cardiovascular magnetic resonance (CMR) data, its usefulness in clinical routine is not yet established, mainly because the interpretation of such data remains mostly based on manual post-processing. Accordingly, our goal was to develop a robust process to automatically estimate velocity and flow rate-related diastolic parameters from PC-CMR data and to test the consistency of these parameters against echocardiography as well as their ability to characterize left ventricular (LV) diastolic dysfunction. RESULTS: We studied 35 controls and 18 patients with severe aortic valve stenosis and preserved LV ejection fraction who had PC-CMR and Doppler echocardiography exams on the same day. PC-CMR mitral flow and myocardial velocity data were analyzed using custom software for semi-automated extraction of diastolic parameters. Inter-operator reproducibility of flow pattern segmentation and functional parameters was assessed on a sub-group of 30 subjects. The mean percentage of overlap between the transmitral flow segmentations performed by two independent operators was 99.7 ± 1.6%, resulting in a small variability ( 0.71) and receiver operating characteristic (ROC) analysis revealed their ability to separate patients from controls, with sensitivity > 0.80, specificity > 0.80 and accuracy > 0.85. Slight superiority in terms of correlation with echocardiography (r = 0.81) and accuracy to detect LV abnormalities (sensitivity > 0.83, specificity > 0.91 and accuracy > 0.89) was found for the PC-CMR flow-rate related parameters. CONCLUSIONS: A fast and reproducible technique for flow and myocardial PC-CMR data analysis was successfully used on controls and patients to extract consistent velocity-related diastolic parameters, as well as flow rate-related parameters. This technique provides a valuable addition to established CMR tools in the evaluation and the management of patients with diastolic dysfunction

    Heart valve disease: investigation by cardiovascular magnetic resonance

    Get PDF
    Cardiovascular magnetic resonance (CMR) has become a valuable investigative tool in many areas of cardiac medicine. Its value in heart valve disease is less well appreciated however, particularly as echocardiography is a powerful and widely available technique in valve disease. This review highlights the added value that CMR can bring in valve disease, complementing echocardiography in many areas, but it has also become the first-line investigation in some, such as pulmonary valve disease and assessing the right ventricle. CMR has many advantages, including the ability to image in any plane, which allows full visualisation of valves and their inflow/outflow tracts, direct measurement of valve area (particularly for stenotic valves), and characterisation of the associated great vessel anatomy (e.g. the aortic root and arch in aortic valve disease). A particular strength is the ability to quantify flow, which allows accurate measurement of regurgitation, cardiac shunt volumes/ratios and differential flow volumes (e.g. left and right pulmonary arteries). Quantification of ventricular volumes and mass is vital for determining the impact of valve disease on the heart, and CMR is the 'Gold standard' for this. Limitations of the technique include partial volume effects due to image slice thickness, and a low ability to identify small, highly mobile objects (such as vegetations) due to the need to acquire images over several cardiac cycles. The review examines the advantages and disadvantages of each imaging aspect in detail, and considers how CMR can be used optimally for each valve lesion

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication
    corecore