28 research outputs found

    Human Alu insertion polymorphisms in North African populations

    Get PDF
    Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. This study analyses seven Alu insertion polymorphisms in a sample of 297 individuals from the autochthonous population of Tunisia (Thala, Smar, Zarzis and Bou Salem) and Libya with the aim of studying their genetic structure with respect to the populations of North Africa, Western, Eastern and Central Europe. The comparative analyses carried out using the MDS and AMOVA methods reveal the existence of spatial heterogeneity, and identify four population groups. Study populations (Libya, Smar, Zarzis and Bou Salem) are closest to North African populations whereas Thala is isolated and is closest to Western European populations. In conclusion, Results of the present study support the important role that migratory movements have played in the North African gene pool, at least since the Neolithic period

    Evaluating a subset of ancestry informative SNPs for discriminating among Southwest Asian and circum-Mediterranean populations

    Get PDF
    AbstractMany different published sets of single nucleotide polymorphisms (SNPs) and/or insertion-deletion polymorphisms (InDels) can serve as ancestry informative markers (AIMs) to distinguish among continental regions of the world. For a focus on Southwest Asian ancestry we chose to start with the Kidd Lab panel of 55 ancestry-informative SNPs (AISNPs) because it already provided good global reference data (FROG-kb: frog.med.yale.edu) in a set of 73 population samples distinguishing at least 8 biogeographic clusters of populations. This panel serves as a good first tier ancestry panel. We are now interested in identifying region-specific second tier panels for more refined distinction among populations within each of the global regions. We have begun studying the global region centered on Southwest Asia and the region encompassing the Mediterranean Sea. We have incorporated 10 populations from North Africa, Turkey and Iran and included 31 of the original 73 populations and eleven 1000 Genomes Phase3 populations for a total of 3129 individuals from 52 populations, all typed for the 55 AISNPs. We have then identified the subset of the 55 AISNPs that are most informative for this region of the world using Heatmap, Fst, and Informativeness analyses to eliminate those SNPs essentially redundant or providing no information among populations in this region, reducing the number of SNPs to 32. STRUCTURE and PCA analyses show the remaining 32 SNPs identify the North African cluster and appropriately include the Turkish and Iranian samples with the Southwest Asian cluster. These markers provide the basis for building an improved, optimized panel of AISNPs that provides additional information on differences among populations in this part of the world. The data have also allowed an examination of the accuracy of the ancestry inference based on 32 SNPs for the newly studied populations from this region. The likelihood ratio approach to ancestry inference embodied in FROG-kb provides highly significant population assignments within one order of magnitude for each individual in the Turkish, Iranian, and Tunisian populations

    Reconciling evidence from ancient and contemporary genomes: a major source for the European Neolithic within Mediterranean Europe

    Get PDF
    Important gaps remain in our understanding of the spread of farming into Europe, due partly to apparent contradictions between studies of contemporary genetic variation and ancient DNA. It seems clear that farming was introduced into central, northern, and eastern Europe from the south by pioneer colonization. It is often argued that these dispersals originated in the Near East, where the potential source genetic pool resembles that of the early European farmers, but clear ancient DNA evidence from Mediterranean Europe is lacking, and there are suggestions that Mediterranean Europe may have resembled the Near East more than the rest of Europe in the Mesolithic. Here, we test this proposal by dating mitogenome founder lineages from the Near East in different regions of Europe. We find that whereas the lineages date mainly to the Neolithic in central Europe and Iberia, they largely date to the Late Glacial period in central/eastern Mediterranean Europe. This supports a scenario in which the genetic pool of Mediterranean Europe was partly a result of Late Glacial expansions from a Near Eastern refuge, and that this formed an important source pool for subsequent Neolithic expansions into the rest of Europ

    Genetic relationships of European, Mediterranean, and SW Asian populations using a panel of 55 AISNPs

    Get PDF
    The set of 55 ancestry informative SNPs (AISNPs) originally developed by the Kidd Lab has been studied on a large number of populations and continues to be applied to new population samples. The existing reference database of population samples allows the relationships of new population samples to be inferred on a global level. Analyses show that these autosomal markers constitute one of the better panels of AISNPs. Continuing to build this reference database enhances its value. Because more than half of the 25 ethnic groups recently studied with these AISNPs are from Southwest Asia and the Mediterranean region, we present here various analyses focused on populations from these regions along with selected reference populations from nearby regions where genotype data are available. Many of these ethnic groups have not been previously studied for forensic markers. Data on populations from other world regions have also been added to the database but are not included in these focused analyses. The new population samples added to ALFRED and FROG-kb increase the total to 164 population samples that have been studied for all 55 AISNPs

    Female Gene Pools of Berber and Arab Neighboring Communities in Central Tunisia: Microstructure of mtDNA Variation in North Africa

    No full text
    North African populations are considered genetically closer to Eurasians than to sub-Saharans. However, they display a considerably high mtDNA heterogeneity among them, namely in the frequencies of the U6, East African, and sub-Saharan haplogroups. In this study, we describe and compare the female gene pools of two neighboring Tunisian populations, Kesra (Berber) and Zriba (non-Berber), which have contrasting historical backgrounds. Both populations presented lower diversity values than those observed for other North African populations, and they were the only populations not showing significant negative Fu’s Fs values. Kesra displayed a much higher proportion of typical sub-Saharan haplotypes (49%, including 4.2% of M1 haplogroup) than Zriba (8%). With respect to U6 sequences, frequencies were low (2% in Kesra and 8% in Zriba), and all belonged to the subhaplogroup U6a. An analysis of these data in the context of North Africa reveals that the emerging picture is complex, because Zriba would match the profile of a Berber Moroccan population, whereas Kesra, which shows twice the frequency of sub-Saharan lineages normally observed in northern coastal populations, would match a western Saharan population except for the low U6 frequency. The North African patchy mtDNA landscape has no parallel in other regions of the world and increasing the number of sampled populations has not been accompanied by any substantial increase in our understanding of its phylogeography. Available data up to now rely on sampling small, scattered populations, although they are carefully characterized in terms of their ethnic, linguistic, and historical backgrounds. It is therefore doubtful that this picture truly represents the complex historical demography of the region rather than being just the result of the type of samplings performed so far

    Distribution of xenobiotic metabolising enzyme genotypes in different Tunisian populations

    No full text
    Background: The N-acetyltransferase 2 (NAT2) and glutathione transferase enzymes play a crucial role in the metabolism of xenobiotics. Genetic polymorphisms affecting these enzymes can modify their activities with an effect on individual susceptibility for different pathologies. These metabolic phenotypes occur with varying prevalence in different populations. Aim: This study sought to analyse the prevalence of important allelic variants of NAT2, GSTM1 and GSTT1 in different Tunisian populations and compare them to other previously reported data. Subjects and methods: A total of 253 unrelated subjects from different Tunisian populations participated in this study. Subjects were examined with respect to the frequency of slow NAT2, GSTM1*0 and GSTT1*0 genotypes. Results: The frequency of ‘slow’ NAT2, GSTM1*0 and GSTT1*0 genotypes in the Tunisian population were, respectively, estimated at 23.3%, 53.75% and 29.24%. The frequency of slow NAT2 and GSTM1*0 genotypes were significantly different between the North, Centre and South of Tunisia. However, this study doesn’t report any significant differences in the genotype distribution between Cosmopolitan, Arab and Berber populations. Conclusions: In conclusion, these data indicate that the Tunisian population is highly heterogenic and, therefore, a strict definition of the populations involved in studies investigating the clinical effect of polymorphisms is required

    Ancient Local Evolution of African mtDNA Haplogroups in Tunisian Berber Populations

    No full text
    Our objective is to highlight the age of sub-Saharan gene flows in North Africa and particularly in Tunisia. Therefore we analyzed in a broad phylogeographic context sub-Saharan mtDNA haplogroups of Tunisian Berber populations considered representative of ancient settlement. More than 2,000 sequences were collected from the literature, and networks were constructed. The results show that the most ancient haplogroup is L3*, which would have been introduced to North Africa from eastern sub-Saharan populations around 20,000 years ago. Our results also point to a less ancient western sub-Saharan gene flow to Tunisia, including haplogroups L2a and L3b. This conclusion points to an ancient African gene flow to Tunisia before 20,000 BP. These findings parallel the more recent findings of both archaeology and linguistics on the prehistory of Africa. The present work suggests that sub-Saharan contributions to North Africa have experienced several complex population processes after the occupation of the region by anatomically modern humans. Our results reveal that Berber speakers have a foundational biogeographic root in Africa and that deep African lineages have continued to evolve in supra-Saharan Africa. Pay-Per-View Download To access this article as a PDF pay-per-view download via BioOne, please click here

    Evaluating a subset of ancestry informative SNPs for discriminating among Southwest Asian and circum-Mediterranean populations

    No full text
    Many different published sets of single nucleotide polymorphisms (SNPs) and/or insertion-deletion polymorphisms (InDels) can serve as ancestry informative markers (AIMs) to distinguish among continental regions of the world. For a focus on Southwest Asian ancestry we chose to start with the Kidd Lab panel of 55 ancestry-informative SNPs (AISNPs) because it already provided good global reference data (FROG-kb: frog.med.yale.edu) in a set of 73 population samples distinguishing at least 8 biogeographic clusters of populations. This panel serves as a good first tier ancestry panel. We are now interested in identifying region-specific second tier panels for more refined distinction among populations within each of the global regions. We have begun studying the global region centered on Southwest Asia and the region encompassing the Mediterranean Sea. We have incorporated 10 populations from North Africa, Turkey and Iran and included 31 of the original 73 populations and eleven 1000 Genomes Phase3 populations for a total of 3129 individuals from 52 populations, all typed for the 55 AISNPs. We have then identified the subset of the 55 AISNPs that are most informative for this region of the world using Heatmap, Fst, and Informativeness analyses to eliminate those SNPs essentially redundant or providing no information among populations in this region, reducing the number of SNPs to 32. STRUCTURE and PCA analyses show the remaining 32 SNPs identify the North African cluster and appropriately include the Turkish and Iranian samples with the Southwest Asian cluster. These markers provide the basis for building an improved, optimized panel of AISNPs that provides additional information on differences among populations in this part of the world. The data have also allowed an examination of the accuracy of the ancestry inference based on 32 SNPs for the newly studied populations from this region. The likelihood ratio approach to ancestry inference embodied in FROG-kb provides highly significant population assignments within one order of magnitude for each individual in the Turkish, Iranian, and Tunisian populations. (C) 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers

    No full text
    Background: In Algeria, as in all North Africa, Berbers constitute the old background of the population. Today, Berber speakers account for only ∼ 25% of Algerians. This decline is the product of a complex human settlement from pre-history to recent invaders. Aim: This study aims to determine the genetic diversity level within a sample of five Algerian Berber speaking populations in order to contribute to resolving issues about the North African population settlement. Subjects and methods: Two Algerian Berber groups (Kabyle and Chaouia), originated from five administrative regions from Algeria, were typed for 11 Alu Insertions. Analysis has been based on Fst genetic distance, AMOVA, NMDS and distance to the centroid model. Results: No genetic differentiation has been observed between all Algerian Berbers discarding any geographical or ethnic effect. Comparative analyses based on Fst genetic distance did not show significant affinities between North Africans and either South Europeans or Middle Easterners, except genetic proximity between Algerians and Iberians. The amount of genetic diversity among Algerians and North African populations detected by the distance to the centroid model was significant compared with other North Mediterranean populations. Conclusion: A strong genetic homogeneity has been found between Algerian Berbers. Global genetic diversity based on Alu markers is following the isolation by distance model, except for some European populations

    Human Alu Insertion Polymorphisms in North African Populations

    Get PDF
    Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. This study analyses seven Alu insertion polymorphisms in a sample of 297 individuals from the autochthonous population of Tunisia (Thala, Smar, Zarzis, and Bou Salem) and Libya with the aim of studying their genetic structure with respect to the populations of North Africa, Western, Eastern and Central Europe. The comparative analyses carried out using the MDS and AMOVA methods reveal the existence of spatial heterogeneity, and identify four population groups. Study populations (Libya, Smar, Zarzis, and Bou Salem) are closest to North African populations whereas Thala is isolated and is closest to Western European populations. In conclusion, Results of the present study support the important role that migratory movements have played in the North African gene pool, at least since the Neolithic period
    corecore