1,314 research outputs found

    Irreducible triangulations of surfaces with boundary

    Get PDF
    A triangulation of a surface is irreducible if no edge can be contracted to produce a triangulation of the same surface. In this paper, we investigate irreducible triangulations of surfaces with boundary. We prove that the number of vertices of an irreducible triangulation of a (possibly non-orientable) surface of genus g>=0 with b>=0 boundaries is O(g+b). So far, the result was known only for surfaces without boundary (b=0). While our technique yields a worse constant in the O(.) notation, the present proof is elementary, and simpler than the previous ones in the case of surfaces without boundary

    Eikonal contributions to ultra high energy neutrino-nucleon cross sections in low scale gravity models

    Full text link
    We calculate low scale gravity effects on the cross section for neutrino-nucleon scattering at center of mass energies up to the Greisen-Zatsepin-Kuzmin (GZK) scale, in the eikonal approximation. We compare the cases of an infinitely thin brane embedded in n=5 compactified extra-dimensions, and of a brane with a physical tension M_{S}=1 TeV and M_{S}=10 TeV. The extra dimensional Planck scale M_{D} is set at 10^{3} GeV and 2\times10^{3} GeV. We also compare our calculations with neutral current standard model calculations in the same energy range, and compare the thin brane eikonal cross section to its saddle point approximation. New physics effects enhance the cross section by orders of magnitude on average. They are quite sensitive to M_{S} and M_{D} choices, though much less sensitive to n.Comment: 16 pages, 5 figures; 2 figures were removed and the remaining figures and the text were modified for clarification; published versio

    Discrimination of Potent Inhibitors of Toxoplasma gondii Enoyl-Acyl Carrier Protein Reductase by a Thermal Shift Assay

    Get PDF
    Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway that is distinct from the type I pathway found in humans. Enoyl-acyl carrier protein reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogues for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds that inhibited TgENR at low nanomolar concentrations were identified but could not be further differentiated because of the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of the reduced nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide (NAD+) cofactor. We found that all of the inhibitors bind to a TgENR–NAD+ complex but that they differed in their dependence on NAD+ concentration. Ultimately, we were able to identify compounds that bind to the TgENR–NAD+ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data, and ADMET predictions allow for better discrimination between potent ENR inhibitors for the future development of medicine

    Flux-rope twist in eruptive flares and CMEs : due to zipper and main-phase reconnection

    Get PDF
    Funding: UK Science and Technology Facilities CouncilThe nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.PostprintPublisher PDFPeer reviewe

    Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules

    Full text link
    Within the Standard Model, we investigate the weak decays of ΛbΛ+γ\Lambda_b \to \Lambda + \gamma and ΛbΛ+l+l\Lambda_b \to \Lambda + l^{+} l^{-} with the light-cone sum rules approach. The higher twist distribution amplitudes of Λ\Lambda baryon to the leading conformal spin are included in the sum rules for transition form factors. Our results indicate that the higher twist distribution amplitudes almost have no influences on the transition form factors retaining the heavy quark spin symmetry, while such corrections can result in significant impacts on the form factors breaking the heavy quark spin symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of Λ\Lambda baryon are also employed in the sum rules for a comparison, which can give rise to the form factors approximately 5 times larger than that in terms of conformal expansion. Utilizing the form factors calculated in LCSR, we then perform a careful study on the decay rate, polarization asymmetry and forward-backward asymmetry, with respect to the decays of ΛbΛγ\Lambda_b \to \Lambda \gamma, Λl+l\Lambda l^{+}l^{-}.Comment: 38 pages, 15 figures, some typos are corrected and more references are adde

    A consensus linkage map of the chicken genome

    Get PDF
    A consensus linkage map has been developed in the chicken that combines all of the genotyping data from the three available chicken mapping populations. Genotyping data were contributed by the laboratories that have been using the East Lansing and Compton reference populations and from the Animal Breeding and Genetics Group of the Wageningen University using the Wageningen/Euribrid population. The resulting linkage map of the chicken genome contains 1889 loci. A framework map is presented that contains 480 loci ordered on 50 linkage groups. Framework loci are defined as loci whose order relative to one another is supported by odds greater then 3. The possible positions of the remaining 1409 loci are indicated relative to these framework loci. The total map spans 3800 cM, which is considerably larger than previous estimates for the chicken genome. Furthermore, although the physical size of the chicken genome is threefold smaller then that of mammals, its genetic map is comparable in size to that of most mammals. The map contains 350 markers within expressed sequences, 235 of which represent identified genes or sequences that have significant sequence identity to known genes. This improves the contribution of the chicken linkage map to comparative gene mapping considerably and clearly shows the conservation of large syntenic regions between the human and chicken genomes. The compact physical size of the chicken genome, combined with the large size of its genetic map and the observed degree of conserved synteny, makes the chicken a valuable model organism in the genomics as well as the postgenomics era. The linkage maps, the two-point lod scores, and additional information about the loci are available at web sites in Wageningen (http://www.zod.wau.nl/vf/ research/chicken/frame_chicken.html) and East Lansing (http://poultry.mph.msu.edu/)

    Measurement of the Branching Fraction for B->eta' K and Search for B->eta'pi+

    Full text link
    We report measurements for two-body charmless B decays with an eta' meson in the final state. Using 11.1X10^6 BBbar pairs collected with the Belle detector, we find BF(B^+ ->eta'K^+)=(79^+12_-11 +-9)x10^-6 and BF(B^0 -> eta'K^0)=(55^+19_-16 +-8)x10^-6, where the first and second errors are statistical and systematic, respectively. No signal is observed in the mode B^+ -> eta' pi^+, and we set a 90% confidence level upper limit of BF(B^+-> eta'pi^+) eta'K^+- decays is investigated and a limit at 90% confidence level of -0.20<Acp<0.32 is obtained.Comment: Submitted to Physics Letters

    Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

    Get PDF
    Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO center dot B2O3 or 9CaO center dot 3B(2)O(3)center dot CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO center dot 2Al(2)O(3) as the dominant crystalline phase, and rod-like 2CaO center dot B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO center dot Al2O3 precipitates after CaF2 and 3CaO center dot 2SiO(2) formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.ope
    corecore