19 research outputs found

    Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K.

    Get PDF
    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb was examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0-15 cm) and subsoil (35-50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9-56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 µg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using 206Pb/207Pb and 208Pb/207Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type (‘BHT’) Pb, used as an additive in UK petrol, and the local coal/Sourthern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools

    Lead isotope analysis of tooth enamel from a Viking Age mass grave in Southern Britain and the constraints it places on the origin of the individuals

    Get PDF
    Lead analysis of tooth enamel from individuals recovered from a Viking Age burial pit in southern England provides further evidence for their childhood origins outside Britain. All except one of the men have very low Pb concentrations that exclude anthropogenic Pb exposure. Strontium and oxygen isotope compositions identify a core group of men who have Pb isotope compositions of 208Pb/206Pb = 2.065 ± 0.021 (n = 20, 2SD) that, when compared with data from European soils, appear to exclude a childhood in the Scandinavian countries of Norway, Sweden and Finland, whereas areas of Northern continental Europe cannot be excluded

    Chemical signatures of the Anthropocene in the Clyde Estuary, UK: sediment hosted Pb, 207/206 Pb, Total Petroleum Hydrocarbons (TPH), Polyaromatic Hydrocarbon (PAH) and Polychlorinated Bipheny (PCB) pollution records

    Get PDF
    The sediment concentrations of total petroleum hydrocarbons (TPHs), polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Pb and 207/206Pb isotope ratios were measured in seven cores from the middle Clyde estuary (Scotland, UK) with an aim of tracking the late Anthropocene. Concentrations of TPHs ranged from 34 to 4386 mg kg−1, total PAHs from 19 to 16 163 μg kg−1 and total PCBs between less than 4.3 to 1217 μg kg−1. Inventories, distributions and isomeric ratios of the organic pollutants were used to reconstruct pollutant histories. Pre-Industrial Revolution and modern non-polluted sediments were characterized by low TPH and PAH values as well as high relative abundance of biogenic-sourced phenanthrene and naphthalene. The increasing industrialization of the Clyde gave rise to elevated PAH concentrations and PAH isomeric ratios characteristic of both grass/wood/coal and petroleum and combustion (specifically petroleum combustion). Overall, PAHs had the longest history of any of the organic contaminants. Increasing TPH concentrations and a concomitant decline in PAHs mirrored the lessening of coal use and increasing reliance on petroleum fuels from about the 1950s. Thereafter, declining hydrocarbon pollution was followed by the onset (1950s), peak (1965–1977) and decline (post-1980s) in total PCB concentrations. Lead concentrations ranged from 6 to 631 mg kg−1, while 207/206Pb isotope ratios spanned 0.838–0.876, indicative of various proportions of ‘background’, British ore/coal and Broken Hill type petrol/industrial lead. A chronology was established using published Pb isotope data for aerosol-derived Pb and applied to the cores

    Discriminating nursery grounds of juvenile plaice (Pleuronectes platessa) in the south-eastern Irish Sea using otolith microchemistry

    Get PDF
    Nursery grounds are valuable habitats providing sources of food and refuge during early life stages for many commercially caught marine fish. Distinguishing between different nursery grounds and identifying habitat origin using trace elemental concentrations in aragonite structures of teleost fish has proved valuable in fish ecology and fisheries. This study aimed to (1) compare chemical signatures (elemental fingerprints) within sagittal otoliths of juvenile European plaice Pleuronectes platessa sampled from known nursery habitats in the south-eastern Irish Sea and (2) assess their potential and robustness as natural tags for identifying nursery grounds for the putative south-eastern Irish Sea plaice stock. Otoliths from juvenile plaice (‘1-group’, 6 to 15 cm total length) were obtained from 8 nursery grounds in coastal areas off north-west England and north Wales (including Anglesey) between June and August 2008. Solution-based inductively coupled plasma-mass spectrometry determined the concentrations of 10 elements (Li, Na, Mg, K, Mn, Zn, Rb, Sr, Sn, Ba), with significant differences in otolith element composition observed between all nursery grounds. Cross-validation linear discriminant function analysis (CV-LDFA) classified fish to their nursery ground of capture (46.2 to 93.3%), with a total group CV-LDFA accuracy of 71.0%. CV-LDFA between regions (north-west England and north Wales) classified fish with 82% accuracy. The discrimination of juvenile plaice from all 8 nursery grounds within the south-eastern Irish Sea using otolith microchemistry offers significant opportunities in the development of future effective fisheries management strategies through understanding the supply of juveniles from specific nursery grounds and adult plaice in the south-eastern Irish Sea

    Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland

    Get PDF
    Many rare metals used today are derived from granitic pegmatites, but debate continues about the origin of these rocks. It is clear that some pegmatites represent the most highly fractionated products of a parental granite body, whilst others have formed by anatexis of local crust. However, the importance of these two processes in the formation of rare-metal pegmatites is not always evident. The Lewisian Gneiss Complex of NW Scotland comprises Archaean meta-igneous gneisses which were highly reworked during accretional and collisional events in the Palaeoproterozoic (Laxfordian orogeny). Crustal thickening and subsequent decompression led to melting and the formation of abundant granitic and pegmatitic sheets in many parts of the Lewisian Gneiss Complex. This paper presents new petrological, geochemical and age data for those pegmatites and shows that, whilst the majority are barren biotite-magnetite granitic pegmatites, a few muscovite-garnet (rare-metal) pegmatites are present. These are mainly intruded into a belt of Palaeoproterozoic metasedimentary and meta-igneous rocks known as the Harris Granulite Belt. The rare-metal pegmatites are distinct in their mineralogy, containing garnet and muscovite, with local tourmaline and a range of accessory minerals including columbite and tantalite. In contrast, the biotite-magnetite pegmatites have biotite and magnetite as their main mafic components. The rare-metal pegmatites are also distinguished by their bulk-rock and mineral chemistry, including a more peraluminous character and enrichments in Rb, Li, Cs, Be, Nb and Ta. New U-Pb ages (c. 1690–1710 Ma) suggest that these rare-metal pegmatites are within the age range of nearby biotite-magnetite pegmatites, indicating that similar genetic processes could have been responsible for their formation. The peraluminous nature of the rare-metal pegmatites strongly points towards a metasedimentary source. Notably, within the Lewisian Gneiss Complex, such pegmatites are only found in areas where a metasedimentary source is available. The evidence thus points towards all the Laxfordian pegmatites being formed by a process of crustal anatexis, with the formation of rare-metal pegmatites being largely controlled by source composition rather than solely by genetic process. This is in keeping with previous studies that have also challenged the widely accepted model that all rare-metal pegmatites are formed by fractionation from a parental granite, and raises questions about the origin of other mineralised pegmatites worldwide

    Kinetics of uranium(VI) lability and solubility in aerobic soils

    Get PDF
    Uranium may pose a hazard to ecosystems and human health due to its chemotoxic and radiotoxic properties. The long half-life of many U isotopes and their ability to migrate raise concerns over disposal of radioactive wastes. This work examines the long-term U bioavailability in aerobic soils following direct deposition or transport to the surface and addresses two questions: (i) to what extent do soil properties control the kinetics of U speciation changes in soils and (ii) over what experimental timescales must U reaction kinetics be measured to reliably predict long-term of impact in the terrestrial environment? Soil microcosms spiked with soluble uranyl were incubated for 1.7 years. Changes in UVI fractionation were periodically monitored by soil extractions and isotopic dilution techniques, shedding light on the binding strength of uranyl onto the solid phase. Uranyl sorption was rapid and strongly buffered by soil Fe oxides, but UVI remained reversibly held and geochemically reactive. The pool of uranyl species able to replenish the soil solution through several equilibrium reactions is substantially larger than might be anticipated from typical chemical extractions and remarkably similar across different soils despite contrasting soil properties. Modelled kinetic parameters indicate that labile UVI declines very slowly, suggesting that the processes and transformations transferring uranyl to an intractable sink progress at a slow rate regardless of soil characteristics. This is of relevance in the context of radioecological assessments, given that soil solution is the key reservoir for plant uptake

    Organic Pollutants, Heavy Metals and Toxicity in Oil Spill impacted Salt Marsh Sediment Cores, Staten Island, New York City, USA

    Get PDF
    Sediment cores from Staten Island's salt marsh contain multiple historical oil spill events that impact ecological health. Microtox solid phase bioassay indicated moderate to high toxicity. Multiple spikes of TPH (6524 to 9586 mg/kg) and Σ16 PAH (15.5 to 18.9 mg/kg) were co-incident with known oil spills. A high TPH background of 400–700 mg/kg was attributed to diffuse sources. Depth-profiled metals Cu (1243 mg/kg), Zn (1814 mg/kg), Pb (1140 mg/kg), Ni (109 mg/kg), Hg (7 mg/kg), Cd 15 (mg/kg) exceeded sediment quality guidelines confirming adverse biological effects. Changes in Pb206/207 suggested three metal contaminant sources and diatom assemblages responded to two contamination events. Organic and metal contamination in Saw Mill Creek Marsh may harm sensitive biota, we recommend caution in the management of the 20–50 cm sediment interval because disturbance could lead to remobilisation of pre-existing legacy contamination into the waterway

    Using isotope dilution assays to understand speciation changes in Cd, Zn, Pb and Fe in a soil model system under simulated flooding conditions

    Get PDF
    Flooded soils are systems with complex chemistry and understanding the mechanisms that control the mobility and bioavailability of metals in these soils is important for their management. This work uses stable metal multi-element isotopic dilution combined with sequential extraction assays to help understand the changes in solid and solution speciation of Cd, Fe, Pb and Zn in a contaminated soil following submergence. However, it is necessary to ensure that the isotopic dilution principles, originally developed for aerobic soils, are not compromised; in particular due to the presence of non-labile colloids in the solution phase. In particular, no studies examining the validity of these assays in systems where rapid pH and Eh changes are occurring due to fermentation reactions have been published. Thus sucrose (0.42% and 1.26% added C) was used as a carbon source to stimulate bacterial mediated fermentation reactions allowing changes in Cd, Zn, Fe and Pb isotopic exchangeability, speciation and solution chemistry to be examined after 10, 20 and 42 days of submergence. Without the addition of added C, submergence for 42 days only produced minor changes in the speciation of the metals in solid or solution phases. However, the presence of easily labile carbon produced significant responses depending on the quantity of C added. Assessments of whether fermentation products caused over-estimation of the isotopically exchangeable pool of metals (E-values) were made by measuring concentrations with and without a resin purification step. Results showed generally good agreement over a pH range of 4–7 for Pb, Cd, Zn and Fe and demonstrate that fermentation by-products do not induce the formation of non-exchangeable metal colloids. E-value concentrations were compared with fractions extracted using a modified Tessier sequential extraction. With no carbonate phases present in the soils, the E-values for Cd, Zn, Fe and Pb compared favourably with the concentrations of metal present in the combined solution, exchangeable and specifically adsorbed fractions. This provided additional evidence that the conditions for the isotopic dilution assays were not violated as these fractions should be isotopically exchangeable. Combining results from the different treatments and stages of the reduction process, strong pH dependence was found for the isotopically exchangeable and the solution pools of Cd, Zn and Pb

    Lead lability in alluvial soils of the river Trent Catchment, U.K.

    No full text
    Fluvial environments are a major pathway for the dispersal of trace pollutants, whilst alluvial soils act as historical repositories of contaminants from different sources. The UK has an extensive Pb mining history in areas such as the Pennines. We investigated the spatial changes in sources and bioavailability of Pb in alluvial soils of the River Trent floodplain. We used Pb isotope geochemistry and isotope dilution methods to identify the sources and measure reactive pools of Pb in 38 paired topsoils (0-15 cm) and subsoils (35-50 cm). Lability of soils varied between 9-56%, with little difference between top and subsoils as a result of recycling of river bank soils. Soil pH was negatively correlated with lability. Source apportionment using 206Pb/207Pb and 208Pb/207Pb ratios showed that the isotopic ratios in the total, labile and pore water pools fitted along a mixing line between “Broken Hill Type (BHT)” Pb, used as additive before the phasing out of leaded petrol, and the Midlands coal/ Pennine ore Pb. Results showed that BHT Pb migrated downwards and reached 50% of total Pb in some sites. Statistically significant differences (P<0.05) in the isotopic composition of Pb in the total, labile and pore water pools suggested an enrichment in BHT Pb in the labile and pore water pools. It is likely that there are still BHT Pb additions into the alluvial soils at present and/or that anaerobic conditions induced by flooding helps maintain an enriched pool of recently deposited BHT Pb in the labile and pore water pools

    Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    No full text
    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1–100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values
    corecore