177 research outputs found
Study of in the vicinity of
Using 2917 of data accumulated at 3.773~,
44.5~ of data accumulated at 3.65~ and data accumulated
during a line-shape scan with the BESIII detector, the reaction
is studied considering a possible interference
between resonant and continuum amplitudes. The cross section of
,
, is found to have two
solutions, determined to be () pb with the phase angle
(0.11 pb at the 90% confidence level),
or ) pb with both of which
agree with a destructive interference. Using the obtained cross section of
, the cross section of , which is useful information for the future PANDA experiment, is
estimated to be either () nb ( nb at 90% C.L.) or
nb
A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression
This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 ”m thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity
What is a smart device? - a conceptualisation within the paradigm of the internet of things
The Internet of Things (IoT) is an interconnected network of objects which range from simple sensors to smartphones and tablets; it is a relatively novel paradigm that has been rapidly gaining ground in the scenario of modern wireless telecommunications with an expected growth of 25 to 50 billion of connected devices for 2020 Due to the recent rise of this paradigm, authors across the literature use inconsistent terms to address the devices present in the IoT, such as mobile device, smart device, mobile technologies or mobile smart device. Based on the existing literature, this paper chooses the term smart device as a starting point towards the development of an appropriate definition for the devices present in the IoT. This investigation aims at exploring the concept and main features of smart devices as well as their role in the IoT. This paper follows a systematic approach for reviewing compendium of literature to explore the current research in this field. It has been identified smart devices as the primary objects interconnected in the network of IoT, having an essential role in this paradigm. The developed concept for defining smart device is based on three main features, namely context-awareness, autonomy and device connectivity. Other features such as mobility and userinteraction were highly mentioned in the literature, but were not considered because of the nature of the IoT as a network mainly oriented to device-to-device connectivity whether they are mobile or not and whether they interact with people or not. What emerges from this paper is a concept which can be used to homogenise the terminology used on further research in the Field of digitalisation and smart technologies
Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies
Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding
The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production
The KM3NeT Collaboration is building an underwater neutrino observatory at
the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both
composed of a three-dimensional array of light detectors, known as digital
optical modules. Each digital optical module contains a set of 31 three inch
photomultiplier tubes distributed over the surface of a 0.44 m diameter
pressure-resistant glass sphere. The module includes also calibration
instruments and electronics for power, readout and data acquisition. The power
board was developed to supply power to all the elements of the digital optical
module. The design of the power board began in 2013, and several prototypes
were produced and tested. After an exhaustive validation process in various
laboratories within the KM3NeT Collaboration, a mass production batch began,
resulting in the construction of over 1200 power boards so far. These boards
were integrated in the digital optical modules that have already been produced
and deployed, 828 until October 2023. In 2017, an upgrade of the power board,
to increase reliability and efficiency, was initiated. After the validation of
a pre-production series, a production batch of 800 upgraded boards is currently
underway. This paper describes the design, architecture, upgrade, validation,
and production of the power board, including the reliability studies and tests
conducted to ensure the safe operation at the bottom of the Mediterranean Sea
throughout the observatory's lifespa
Ultrasound-assisted extraction of natural products
Ultrasound-assisted extraction (USAE) is an interesting process to obtain high valuable compounds and could contribute to the increase in the value of some food by-products when used as sources of natural compounds. The main benefits will be a more effective extraction, thus saving energy, and also the use of moderate temperatures, which is beneficial for heat-sensitive compounds. For a successful application of the USAE, it is necessary to consider the influence of several process variables, the main ones being the applied ultrasonic power, the frequency, the extraction temperature, the reactor characteristics, and the solvent-sample interaction. The highest extraction rate is usually achieved in the first few minutes, which is the most profitable period. To optimize the process, rate equations and unambiguous process characterization are needed, aspects that have often been lacking. © 2011 Springer Science+Business Media, LLC.The authors thank the Generalitat Valenciana for their financial support in project PROMETEO/2010/062 and the Caja de Ahorros del Mediterraneo for M.D. Esclapez's pre-doctoral grant.Esclapez Vicente, MD.; GarcĂa PĂ©rez, JV.; Mulet Pons, A.; CĂĄrcel CarriĂłn, JA.; Esclapez, MD. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews. 3(2):108-120. https://doi.org/10.1007/s12393-011-9036-6S10812032Abad Romero B, Bou-Maroun E, Reparet JM, Blanquet J, Cayot N (2010) Impact of lipid extraction on the dearomatisation of an Eisenia foetida protein powder. Food Chem 119:459â466Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681â4715Atchley AA, Crum LA (1988) Acoustic cavitation and bubble dynamics. In: Suslick KS (ed) Ultrasound, its chemical, physical, and biological effects. VHS Publishers, Weinheim, pp 1â64Arnold G, Leiteritz L, Zahn S, Rohm H (2009) Ultrasonic cutting of cheese: composition affects cutting work reduction and energy demand. Int Dairy J 19:314â320Barbero GF, Liazid A, Palma M, Barroso CG (2008) Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta 75:1332â1337Benedito J, Carcel JA, Sanjuan N, Mulet A (2000) Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics 38:727â730Benedito J, Carcel JA, Rossello C, Mulet A (2001) Composition assessment of raw meat mixtures using ultrasonics. Meat Sci 57:365â370Bhaskaracharya RK, Kentish S, Ashokkumar M (2009) Selected applications of ultrasonics in food processing. Food Eng Rev 1:31â49Boonkird S, Phisalaphong C, Phisalaphong M (2008) Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason Sonochem 15:1075â1079CĂĄrcel JA, Benedito J, Bon J, Mulet A (2007) High intensity ultrasound effects on meat brining. Meat Sci 76:611â619CĂĄrcel JA, Benedito J, RossellĂł C, Mulet A (2007) Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J Food Eng 78:472â479Cavitus (2009) Grape colour and flavour extraction (Pat. Pend.) for red must extraction http://www.cavitus.com . Crafers. Accessed 10 Jan 2011Chea Chua S, Ping Tan C, Mirhosseini H, Ming Lai O, Long K, Sham Baharin B (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. J Food Eng 92:403â409Chena R, Menga F, Zhang S, Liu Z (2009) Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep Purif Technol 66:340â346Chivate MM, Pandit AB (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:19â25Da Porto C, Decorti D (2009) Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: comparison with conventional hydrodistillation. Ultrason Sonochem 16:795â799Da Porto C, Decorti D, Kikic I (2009) Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem 112:1072â1078DomĂnguez H, NĂșñez MJ, Lema JM (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49:271â286Dong J, Liu Y, Liang Z, Wanga W (2010) Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason Sonochem 17:61â65Entezari MH, Kruus P (1994) Effect of frequency on sonochemical reactions. I: oxidation of iodide. Ultrason Sonochem 1:75â79Esclapez MD, SĂĄez V, MilĂĄn-Yåñez D, Tudela I, Louisnard O, GonzĂĄlez-GarcĂa J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010â1020Ferraro V, Cruz IB, Ferreira R, Malcata JFX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: review. Food Res Int 43:2221â2233Fischer CH, Hart EJ, Henglein AJ (1986) Hydrogen/deuterium isotope exchange in the hydrogen deuteride-water system under the influence of ultrasound. Phys Chem 90:3059â3060Garcia-Noguera J, Weller CL, Oliveira FIP, Rodrigues S, Fernandes FAN (2010) Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innovative Food Sci Emerg Technol 11:225â230GarcĂa-PĂ©rez JV, CĂĄrcel JA, de la Fuente-Blanco S, Riera-Franco de Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics 44:539â543GarcĂa-PĂ©rez JV, GarcĂa-Alvarado MA, Carcel JA, Mulet A (2010) Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. J Food Eng 101:49â58GonzĂĄlez-GarcĂa J, SĂĄez V, Tudela I, DĂez-Garcia MI, Esclapez MD, Louisnard O (2010) Sonochemical treatment of water polluted by chlorinated organocompounds. A review. Water 2:28â74Handa SS, Preet S, Khanuja S, Longo G, Rakesh DD (2008) Extraction Technologies for Medicinal and Aromatic Plants. United Nations Industrial Development Organization and the International Centre for Science and High Technology, TriesteHemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543â548Hielscher (2011) Teltow http:// www.hielscher.com . Accessed 10 Jan 2011Hu Y, Wang T, Wang M, Han S, Wan P, Fan M (2008) Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem Engin Process 47:2256â2261Ince NH, Tezcanli G, Belen RK, Apikyan PG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B 29:167â176Jadhav D, Rekha BN, Gogate PR, Rathod VK (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. J Food Eng 93:421â426Ji J-b, Lu X-h, Cai M-q, Xu C-c (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason Sonochem 13:455â462Kanthale PM, Gogate PR, Pandit AB, Wilhelm AM (2003) Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound. Ultrason Sonochem 10:331â335Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto AL III, Grewell D, Khanal SK (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96:270â278Kardos N, Luche J-L (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115â131Kotronarou A, Mills G, Hoffmann MR (1991) Ultrasonic Irradiation of para-Nitrophenol in Aqueous Solution. J Phys Chem 95:3630â3638Kuijpers MWA, Kemmere MF, Keurentjes JTF (2002) Calorimetric study of the energy efficiency for ultrasound-induced radical formation. Ultrasonics 40:675â678Leighton TG (2007) What is ultrasound? Prog Biophys Mol Biol 93:3â83Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885â900Li H, Pordesimo L, Weiss J (2004) High intensity ultrasound-assisted extraction of oil from soybeans. Food Res Int 37:731â738Liu J, Li J-W, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88:215â221Lianfu Z, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731â737Liazid A, Schwarz M, Varela RM, Palma M, GuillĂ©n DA, Brigui J, MacĂas FA, Barroso CG (2010) Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food Bioprod Process 88:247â252Londoño-Londoño J, Rodrigues de Lima V, Lara O, Gil A, Crecsynski Pasa TB, Arango GJ, Ramirez Pineda JR (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119:81â87Lou Z, Wang H, Zhang M, Wang Z (2010) Improved extraction of oil from chickpea under ultrasound in a dynamic system. J Food Eng 98:13â18Louisnard O, GonzĂĄlez-GarcĂa J, Tudela I, Klima J, SĂĄez V, Vargas-HernĂĄndez Y (2009) FEM simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250â259Luque de Castro MD, Priego-Capote F (2007) Analytical Applications of Ultrasound, Vol. 26, Techniques and Instrumentation in Analytical Chemistry. Elsevier Science, AmsterdamMa Y, Ye X, Hao Y, Xu G, Xu G, Liu D (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227â232Ma Y, Chen J-C, Liu Dong-Hong, Ye X-Q (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57â62Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot. OH and. cntdot. H) by spin trapping. J Chem Soc 104:3537â3539Margulis MA, Margulis IM (2003) Calorimetric method for measurement of acoustic power absorbed in a volume of liquid. Ultrason Sonochem 10:343â345Martin CJ, Law ANR (1983) Design of thermistor probes for measurement of ultrasound intensity distributions. Ultrasonics 21:85â90Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:91â95Meinhardt (2011) Leipzig. http://www.meinhardt-ultraschall.de . Accessed 10 Jan 2011Montalbo-Lomboy M, Khanal SK, van Leeuwen JH, Raman DR, Dunn L Jr, Grewell D Jr (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous Systems. Ultrason Sonochem 17:939â946Mulet A, CĂĄrcel JA, SanjuĂĄn N, Bon J (2003) New food drying technologies. Use of ultrasound. Food Sci Technol Int 9:215â221Naguleswaran S, Vasanthan T (2010) Dry milling of field pea (Pisum sativum L.) groats prior to wet fractionation influences the starch yield and purity. Food Chem 118:627â633Orozco-Solano M, Ruiz-JimĂ©nez J, Luque de Castro MD (2010) Ultrasound-assisted extraction and derivatization of sterols and fatty alcohols from olive leaves and drupes prior to determination by gas chromatographyâtandem mass spectrometry. J Chromatogr A 1217:1227â1235Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Sci Emerg Technol 9:147â154Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. Jai Press, Cambridge, pp 231â287Riener J, Noci G, Cronin DA, Morgan DJ, Lyng JG (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem 119:1108â1113Riera E, GolĂĄs Y, Blanco A, Gallego JA, Blasco M, Mulet A (2004) Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason Sonochem 11:241â244Riera E, Blanco A, GarcĂa J, Benedito J, Mulet A, Gallego-JuĂĄrez JA, Blasco M (2010) High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Physics Procedia 3:141â146RoldĂĄn-GutiĂ©rrez JM, Ruiz-JimĂ©nez J, Luque de Castro MD (2008) Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. Talanta 75:1369â1375Romdhane M, Gourdon C (2002) Investigation in solidâliquid extraction: influence of ultrasound. Chem Eng J 87:11â19Rong L, Kojima Y, Koda S, Nomura H (2008) Simple quantification of ultrasonic intensity using aqueous solution of phenolphthalein. Ultrason Sonochem 8:11â15SĂĄez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Chacterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12:59â65SĂĄez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Characterization of a 20 kHz sonoreactor. Part II: analysis of chemical effects by classical and electrochemical methods. Ultrason Sonochem 12:67â72Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extractionâA review. J Food Eng 95:240â253Science Direct Database (2011) www.sciencedirect.com (Data of consulting: February 2011)Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323â331Starmans DAJ, Nijhuis HH (1996) Extraction of secondary metabolites from plant material: a review. Trends Food Sci Technol 7:191â197Sivakumar V, Lakshmi Anna J, Vijayeeswarri J, Swaminathan G (2009) Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason Sonochem 16:782â789Stanisavljevic IT, Lazic ML, Veljkovic VB (2007) Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason Sonochem 14:646â652Sun Y, Liu D, Chen J, Ye X, Yu D (2011) Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-b-carotene from citrus peels. Ultrason Sonochem 18:243â249Suslick KS (2001) Sonoluminescence and sonochemistry. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 17, 3rd edn. Academic Press, San Diego, pp 363â376Trabelsi F, Ait-Iyazidi H, Berlan J, Fabre PL, Delmas H, Wilhelm AM (1996) Electrochemical determination of the active zones in a high-frequency ultrasonic reactor. Ultrason Sonochem 3:125â130Veillet S, Tomao V, Chemat F (2010) Ultrasound assisted maceration: an original procedure for direct aromatisation of olive oil with basil. Food Chem 123:905â911Velickovic DT, Milenovic DM, Ristic MS, Veljkovic VB (2008) Ultrasonic extraction of waste solid residues from the Salvia sp. Essential oil hydrodistillation. Biochem Eng J 42:97â104Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innovative Food Sci Emerg Technol 2:139â150Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industryâA review. Innovative Food Sci Emerg Technol 9:161â169Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303â313Virot M, Tomao V, Le Bourvellec C, Renard CMCG, Chemat F (2010) Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason Sonochem 17:1066â1074Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804â810Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300â312Wei X, Chen M, Xiao Ja, Liu Y, Yu L, Zhang H, Wang Y (2010) Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polym 79:418â422Weissler A, Cooper HW, Snyder S (1950) Chemical effects of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769â1775Wulff-PĂ©rez M, Torcello-GĂłmez A, GĂĄlvez-RuĂz MJ, MartĂn-RodrĂguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids 23:1096â1102Yang B, Yang H, Li J, Li Z, Jiang Y (2011) Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem 124:551â555Yang Y, Zhang F (2008) Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrason Sonochem 15:308â313Zhang Z-S, Wang L-J, Li D, Jiao S-S, Chena XD, Maoa Z-H (2008) Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol 62:192â198Zhang H-F, Yang X-H, Zhao L-D, Wang Y (2009) Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative Food Sci Emerg Technol 10:54â60Zhang Q-A, Zhang Z-Q, Yue X-F, Fan X-H, Li T, Chen S-F (2009) Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem 116:513â518Zhao S, Kwok K-C, Liang H (2007) Investigation on ultrasound assisted extraction of saikosaponins from Radix Bupleuri. Sep Purif Technol 55:307â312Zhu KX, Sun X-H, Zhou H-M (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 50:266â271Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processesâa review. Trends Food Sci Technol 17:16â23Zou Y, Xie C, Fan G, Gu Z, Han Y (2010) Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innovative Food Sci Emerg Technol 11:611â61
Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study
OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required
Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries
Background: To better understand the epidemiology and patterns of tracheostomy practice for patients with acute respiratory distress syndrome (ARDS), we investigated the current usage of tracheostomy in patients with ARDS recruited into the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG-SAFE) study. Methods: This is a secondary analysis of LUNG-SAFE, an international, multicenter, prospective cohort study of patients receiving invasive or noninvasive ventilation in 50 countries spanning 5 continents. The study was carried out over 4 weeks consecutively in the winter of 2014, and 459 ICUs participated. We evaluated the clinical characteristics, management and outcomes of patients that received tracheostomy, in the cohort of patients that developed ARDS on day 1-2 of acute hypoxemic respiratory failure, and in a subsequent propensity-matched cohort. Results: Of the 2377 patients with ARDS that fulfilled the inclusion criteria, 309 (13.0%) underwent tracheostomy during their ICU stay. Patients from high-income European countries (n = 198/1263) more frequently underwent tracheostomy compared to patients from non-European high-income countries (n = 63/649) or patients from middle-income countries (n = 48/465). Only 86/309 (27.8%) underwent tracheostomy on or before day 7, while the median timing of tracheostomy was 14 (Q1-Q3, 7-21) days after onset of ARDS. In the subsample matched by propensity score, ICU and hospital stay were longer in patients with tracheostomy. While patients with tracheostomy had the highest survival probability, there was no difference in 60-day or 90-day mortality in either the patient subgroup that survived for at least 5 days in ICU, or in the propensity-matched subsample. Conclusions: Most patients that receive tracheostomy do so after the first week of critical illness. Tracheostomy may prolong patient survival but does not reduce 60-day or 90-day mortality. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
- âŠ