6,125 research outputs found

    Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

    Get PDF
    The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression

    The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities

    Get PDF
    Inorganic polyphosphate (poly-P), guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) are ubiquitous in bacteria. These molecules play a variety of important physiological roles associated with stress resistance, persistence, and virulence. In the bacterial pathogen Mycobacterium tuberculosis, the identities of the proteins responsible for the metabolism of polyphosphate and (p)ppGpp remain to be fully established. M. tuberculosis encodes two PPX-GppA homologues, Rv0496 (MTB-PPX1) and Rv1026, which share significant sequence similarity with bacterial exopolyphosphatase (PPX) and guanosine pentaphosphate 5′-phosphohydrolase (GPP) proteins. Here we delineate the respective biochemical activities of the Rv0496 and Rv1026 proteins and benchmark these against the activities of the PPX and GPP proteins from Escherichia coli. We demonstrate that Rv0496 functions as an exopolyphosphatase, showing a distinct preference for relatively short-chain poly-P substrates. In contrast, Rv1026 has no detectable exopolyphosphatase activities. Analogous to the E. coli PPX and GPP enzymes, the exopolyphosphatase activities of Rv0496 are inhibited by pppGpp and, to a lesser extent, by ppGpp alarmones, which are produced during the bacterial stringent response. However, neither Rv0496 nor Rv1026 have the ability to hydrolyze pppGpp to ppGpp; a reaction catalyzed by E. coli PPX and GPP. Both the Rv0496 and Rv1026 proteins have modest ATPase and to a lesser extent ADPase activities. pppGpp alarmones inhibit the ATPase activities of Rv1026 and, to a lesser extent, the ATPase activities of Rv0496. We conclude that PPX-GppA family proteins may not possess all the catalytic activities implied by their name and may play distinct biochemical roles involved in polyphosphate and (p)ppGpp metabolic pathways. © 2012 2012 Choi et al.published_or_final_versio

    Automatic Inference of Cross-modal Connection Topologies for X-CNNs

    Full text link
    This paper introduces a way to learn cross-modal convolutional neural network (X-CNN) architectures from a base convolutional network (CNN) and the training data to reduce the design cost and enable applying cross-modal networks in sparse data environments. Two approaches for building X-CNNs are presented. The base approach learns the topology in a data-driven manner, by using measurements performed on the base CNN and supplied data. The iterative approach performs further optimisation of the topology through a combined learning procedure, simultaneously learning the topology and training the network. The approaches were evaluated agains examples of hand-designed X-CNNs and their base variants, showing superior performance and, in some cases, gaining an additional 9% of accuracy. From further considerations, we conclude that the presented methodology takes less time than any manual approach would, whilst also significantly reducing the design complexity. The application of the methods is fully automated and implemented in Xsertion library.Comment: 10 pages, 3 figures, 2 tables, to appear in ISNN 201

    Defects in Friction Stir Welding of Steel

    Get PDF
    Defects associated with friction stir welding of two steel grades including DH36 and EH46 were investigated. Different welding parameters including tool rotational and tool traverse (linear) speeds were applied to understand their effect on weld seam defects including microcracks and voids formation. SEM images and infinite focus microscopy were employed to identify the defects types. Two new defects associated with the friction stir welding process are introduced in this work. The first defect identified in this work is a microcrack found between the plunge and the steady state region and attributed to the traverse moving of the tool with unsuitable speed from the plunge-dwell to the steady state stage. The tool traverse speed has recommended to travel 20 mm more with accelerated velocity range of 0.1 from the maximum traverse speed until reaching the steady state. The maximum recommended traverse speed in the steady state was also suggested to be less than 400 mm/min in order to avoid the lack in material flow. The second type of defect observed in this work was microcracks inside the stirred zone caused by elemental precipitations of TiN. The precipitates of TiN were attributed to the high tool rotational speed which caused the peak temperature to exceed 1200 °C at the top of the stirred zone and based on previous work. The limit of tool rotational speed was recommended to be maintained in the range of 200-500 RPM based on the mechanical experiments on the FSW samples

    Advances in low-memory subgradient optimization

    Get PDF
    One of the main goals in the development of non-smooth optimization is to cope with high dimensional problems by decomposition, duality or Lagrangian relaxation which greatly reduces the number of variables at the cost of worsening differentiability of objective or constraints. Small or medium dimensionality of resulting non-smooth problems allows to use bundle-type algorithms to achieve higher rates of convergence and obtain higher accuracy, which of course came at the cost of additional memory requirements, typically of the order of n2, where n is the number of variables of non-smooth problem. However with the rapid development of more and more sophisticated models in industry, economy, finance, et all such memory requirements are becoming too hard to satisfy. It raised the interest in subgradient-based low-memory algorithms and later developments in this area significantly improved over their early variants still preserving O(n) memory requirements. To review these developments this chapter is devoted to the black-box subgradient algorithms with the minimal requirements for the storage of auxiliary results, which are necessary to execute these algorithms. To provide historical perspective this survey starts with the original result of N.Z. Shor which opened this field with the application to the classical transportation problem. The theoretical complexity bounds for smooth and non-smooth convex and quasi-convex optimization problems are briefly exposed in what follows to introduce to the relevant fundamentals of non-smooth optimization. Special attention in this section is given to the adaptive step-size policy which aims to attain lowest complexity bounds. Unfortunately the non-differentiability of objective function in convex optimization essentially slows down the theoretical low bounds for the rate of convergence in subgradient optimization compared to the smooth case but there are different modern techniques that allow to solve non-smooth convex optimization problems faster then dictate lower complexity bounds. In this work the particular attention is given to Nesterov smoothing technique, Nesterov Universal approach, and Legendre (saddle point) representation approach. The new results on Universal Mirror Prox algorithms represent the original parts of the survey. To demonstrate application of non-smooth convex optimization algorithms for solution of huge-scale extremal problems we consider convex optimization problems with non-smooth functional constraints and propose two adaptive Mirror Descent methods. The first method is of primal-dual variety and proved to be optimal in terms of lower oracle bounds for the class of Lipschitz-continuous convex objective and constraints. The advantages of application of this method to sparse Truss Topology Design problem are discussed in certain details. The second method can be applied for solution of convex and quasi-convex optimization problems and is optimal in a sense of complexity bounds. The conclusion part of the survey contains the important references that characterize recent developments of non-smooth convex optimization

    Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    Get PDF
    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    F-theory and Neutrinos: Kaluza-Klein Dilution of Flavor Hierarchy

    Get PDF
    We study minimal implementations of Majorana and Dirac neutrino scenarios in F-theory GUT models. In both cases the mass scale of the neutrinos m_nu ~ (M_weak)^2/M_UV arises from integrating out Kaluza-Klein modes, where M_UV is close to the GUT scale. The participation of non-holomorphic Kaluza-Klein mode wave functions dilutes the mass hierarchy in comparison to the quark and charged lepton sectors, in agreement with experimentally measured mass splittings. The neutrinos are predicted to exhibit a "normal" mass hierarchy, with masses m_3,m_2,m_1 ~ .05*(1,(alpha_GUT)^(1/2),alpha_GUT) eV. When the interactions of the neutrino and charged lepton sectors geometrically unify, the neutrino mixing matrix exhibits a mild hierarchical structure such that the mixing angles theta_23 and theta_12 are large and comparable, while theta_13 is expected to be smaller and close to the Cabibbo angle: theta_13 ~ theta_C ~ (alpha_GUT)^(1/2) ~ 0.2. This suggests that theta_13 should be near the current experimental upper bound.Comment: v2: 83 pages, 10 figures, references adde
    corecore