13,105 research outputs found

    On Revenue Maximization with Sharp Multi-Unit Demands

    Full text link
    We consider markets consisting of a set of indivisible items, and buyers that have {\em sharp} multi-unit demand. This means that each buyer ii wants a specific number did_i of items; a bundle of size less than did_i has no value, while a bundle of size greater than did_i is worth no more than the most valued did_i items (valuations being additive). We consider the objective of setting prices and allocations in order to maximize the total revenue of the market maker. The pricing problem with sharp multi-unit demand buyers has a number of properties that the unit-demand model does not possess, and is an important question in algorithmic pricing. We consider the problem of computing a revenue maximizing solution for two solution concepts: competitive equilibrium and envy-free pricing. For unrestricted valuations, these problems are NP-complete; we focus on a realistic special case of "correlated values" where each buyer ii has a valuation v_i\qual_j for item jj, where viv_i and \qual_j are positive quantities associated with buyer ii and item jj respectively. We present a polynomial time algorithm to solve the revenue-maximizing competitive equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded by a constant, a revenue maximizing solution can be found efficiently; the general demand case is shown to be NP-hard.Comment: page2

    Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries

    Full text link
    Suppose that an mm-simplex is partitioned into nn convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ϵ\epsilon from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant mm uses poly(n,log(1ϵ))poly(n, \log \left( \frac{1}{\epsilon} \right)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant nn uses poly(m,log(1ϵ))poly(m, \log \left( \frac{1}{\epsilon} \right)) queries. We show via Kakutani's fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in Theorem 6, adds footnotes with additional comments and fixes typo

    Fast Algorithms at Low Temperatures via Markov Chains

    Get PDF
    For spin systems, such as the hard-core model on independent sets weighted by fugacity lambda>0, efficient algorithms for the associated approximate counting/sampling problems typically apply in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for abstract polymer models, and present an elementary proof of rapid mixing of this new chain under sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms with running time O(n log n) for the Potts model and O(n^2 log n) for the hard-core model, in contrast to typical running times of n^{O(log Delta)} for algorithms based on Barvinok\u27s polynomial interpolation method on graphs of maximum degree Delta. In addition, our approach via our polymer model Markov chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin system Glauber dynamics restricted to even and odd or "red" dominant portions of the respective state spaces

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    Unparticle physics and Higgs phenomenology

    Get PDF
    Recently, conceptually new physics beyond the Standard Model has been proposed, where a hidden conformal sector provides ``unparticle'' which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving unparticle, the Higgs doublet and the gauge bosons. Once the Higgs doublet develops the vacuum expectation value, the conformal symmetry is broken and as a result, the mixing between unparticle and Higgs boson emerges. We find that this mixing can cause sizable shifts for the couplings between Higgs boson and a pair of gluons and photons, because these couplings exist only at the loop level in the Standard Model. These Higgs couplings are the most important ones for the Higgs boson search at the CERN Large Hadron Collider, and the unparticle physics effects may be observed together with the discovery of Higgs boson.Comment: 5 pages, 4 figures; version to appear in Phys. Lett.

    Conformative Filtering for Implicit Feedback Data

    Full text link
    Implicit feedback is the simplest form of user feedback that can be used for item recommendation. It is easy to collect and is domain independent. However, there is a lack of negative examples. Previous work tackles this problem by assuming that users are not interested or not as much interested in the unconsumed items. Those assumptions are often severely violated since non-consumption can be due to factors like unawareness or lack of resources. Therefore, non-consumption by a user does not always mean disinterest or irrelevance. In this paper, we propose a novel method called Conformative Filtering (CoF) to address the issue. The motivating observation is that if there is a large group of users who share the same taste and none of them have consumed an item before, then it is likely that the item is not of interest to the group. We perform multidimensional clustering on implicit feedback data using hierarchical latent tree analysis (HLTA) to identify user `tastes' groups and make recommendations for a user based on her memberships in the groups and on the past behavior of the groups. Experiments on two real-world datasets from different domains show that CoF has superior performance compared to several common baselines

    Increasing the Fisher Information Content in the Matter Power Spectrum by Non-linear Wavelet Weiner Filtering

    Full text link
    We develop a purely mathematical tool to recover some of the information lost in the non-linear collapse of large-scale structure. From a set of 141 simulations of dark matter density fields, we construct a non-linear Weiner filter in order to separate Gaussian and non-Gaussian structure in wavelet space. We find that the non-Gaussian power is dominant at smaller scales, as expected from the theory of structure formation, while the Gaussian counterpart is damped by an order of magnitude on small scales. We find that it is possible to increase the Fisher information by a factor of three before reaching the translinear plateau, an effect comparable to other techniques like the linear reconstruction of the density field.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical Journa
    corecore