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Abstract
For spin systems, such as the hard-core model on independent sets weighted by fugacity λ > 0,
efficient algorithms for the associated approximate counting/sampling problems typically apply
in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash
and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient
sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at
sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures.
Their method is based on using the cluster expansion to obtain a complex zero-free region for the
partition function of a polymer model, and then approximating this partition function using the
polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for
abstract polymer models, and present an elementary proof of rapid mixing of this new chain under
sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and
ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms
with running time O(n logn) for the Potts model and O(n2 logn) for the hard-core model, in contrast
to typical running times of nO(log ∆) for algorithms based on Barvinok’s polynomial interpolation
method on graphs of maximum degree ∆. In addition, our approach via our polymer model Markov
chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to
complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts
models with standard Markov chain comparison tools to obtain polynomial mixing time for the
usual spin system Glauber dynamics restricted to even and odd or “red” dominant portions of the
respective state spaces.
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1 Introduction

The hard-core model from statistical physics is defined on the set of independent sets of a
graph G, where the independent sets are weighted by a fugacity λ > 0. The associated Gibbs
distribution µG,λ is defined as follows, for an independent set I:

µG,λ(I) = λ|I|

ZG,λ
(1)

where ZG,λ =
∑
I∈I(G) λ

|I| is the hard-core partition function (also called the independence
polynomial), I(G) is the set of independent sets of G, and λ > 0 is the fugacity.

In applications, there are two important computational tasks associated to a spin system
such as the hard-core model. Given an error parameter ε ∈ (0, 1), an ε-approximate counting
algorithm outputs a number Ẑ so that e−εZG,λ ≤ Ẑ ≤ eεZG,λ, and an ε-approximate
sampling algorithm outputs a random sample I with distribution µ̂ so that the total variation
distance satisfies ‖µλ − µ̂‖TV < ε.

While classical statistical physics is most interested in studying the hard-core model on
the integer lattice Zd, the perspective of computer science is to consider wider families of
graphs, such as the set of all graphs, all graphs of maximum degree ∆, or all bipartite graphs
of maximum degree ∆.

Almost all proven efficient algorithms for approximate counting and sampling from the
hard-core model work for low fugacities (high temperatures in the language of statistical
physics). In the high temperature regime there are at least three distinct algorithmic
approaches to approximate counting and sampling: Markov chains, correlation decay, and
polynomial interpolation. One striking advantage of the Markov chain approach is that the
algorithms are much faster and simpler than the algorithms from the other approaches. In

https://arxiv.org/abs/1901.06653
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particular, it is common for a Markov chain sampling algorithm to run in time O(n logn),
e.g., see [8, 10], while typical running times for algorithms based on correlation decay [26, 21]
and polynomial interpolation [1] are nO(log ∆) where ∆ is the maximum degree of the graph.

In general there are no known efficient algorithms at low temperatures (high fugacities),
but recently efficient algorithms have been developed for some special classes of graphs
including subsets of Zd [14], random regular bipartite graphs, and bipartite expander graphs
in general [16, 20]. What these bipartite graphs have in common is that for large enough λ,
typical independent sets drawn from µG,λ align closely with one side or the other of the
bipartition (the two ground states). This phenomenon is related to the phase transition
phenomenon in infinite graphs, and implies the exponentially slow mixing time of local
Markov chains [4, 12, 22]. The algorithms introduced in [14] exploit this phenomenon by
expressing the partition function ZG,λ in terms of deviations from the two ground states,
and then using a truncation of a convergent series expansion (the Taylor series or the cluster
expansion) to approximate the log partition function. In statistical physics this is called a
perturbative approach, and while in general it does not work in the largest possible range of
parameter space, when it does work it gives a very detailed probabilistic understanding of
the model [24, 6, 7].

To apply the perturbative approach at low temperatures, one rewrites the original spin
model as a new model in which single spin interactions are replaced by the interaction of
connected components representing deviations from a chosen ground state. Such models
are called abstract polymer models, as detailed below, and have long been used in statistical
physics to understand phase transitions. In this paper, we show that once a low temperature
spin model has been transformed into an abstract polymer model, Markov chains once
again become an effective algorithmic tool. Using this approach we obtain nearly linear and
quadratic time sampling algorithms for low temperature models on expander graphs in cases
where only nO(log ∆)-time algorithms were previously known.

1.1 Abstract polymer models
Abstract polymer models, as defined by Gruber and Kunz in 1971 [13], (or “animal models”
in Dobruishin’s terminology [7]) are an important tool in studying the equilibrium phases
of statistical physics models on lattices (e.g. [19, 6] among many others; see [3] for a brief
history of their use in statistical physics and combinatorics). Recently they have been used
to develop efficient algorithms for sampling and approximating the partition functions of
statistical physics models on lattices [14] and expander graphs [16, 20] at low temperatures,
the regime in which Markov chains like the Glauber dynamics are known to mix slowly.

We will study the following polymer models. We start with a host graph G and a set
[q] = {0, . . . , q − 1} of spins. For each vertex v, there is a ground-state spin gv. A polymer
γ consists of a connected set of vertices together with an assignment σγ of spins from
{0, . . . , q − 1} \ gv to each vertex v ∈ γ (we abuse notation and use γ to denote both the
polymer and the associated set of vertices). The size of a polymer, |γ|, is the number of
vertices in γ. The set of all polymers is P(G).

A polymer model on G consists of a set C(G) ⊆ P(G) of “allowed” polymers, and a
non-negative weight wγ for each polymer γ ∈ C(G). We denote this model by (C(G), w).
Two polymers γ and γ′ are “compatible” (written γ ∼ γ′) if their distance in the host graph
is at least 2; otherwise they are incompatible (written γ � γ′). The state space of allowable
configurations is Ω = {Γ ⊆ C(G) | ∀γ, γ′ ∈ Γ, γ ∼ γ′}.

The partition function of the polymer model is Z(G) =
∑

Γ∈Ω
∏
γ∈Γ wγ , where the empty

set of polymers contributes 1 to the partition function. The Gibbs measure µG is the

probability distribution on Ω given by µG(Γ) =
∏

γ∈Γ
wγ

Z(G) .
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41:4 Fast Algorithms at Low Temperatures via Markov Chains

The polymer model is in fact a hard-core model on the “incompatibility graph” of C(G)
(two polymers joined by an edge if they are incompatible), with non-uniform fugacities given
by the weights wγ . However, the geometry inherited from the host graph G and the sizes of
the polymers adds additional structure to the model.

I Example 1. One instance of a polymer model is the hard-core model itself: polymers are
single vertices of the graph G, labeled with “1” (for occupied) against a ground state “0”
(for unoccupied). Each polymer (vertex) v comes with the weight function wv = λ. Then
the set of allowable polymer configurations is exactly the set of independent sets of G, and
so the polymer model partition function is exactly the partition function of the hard-core
model on G.

I Example 2. A second instance of a polymer model is related to the ferromagnetic q-color
Potts model on a graph G (see Definition 8 below). Fix a color g ∈ [q] to be the ground state
color, and define polymers to be connected subgraphs of G of size at most M , with vertices
labeled by the remaining colors [q] \ {g}. A polymer γ has weight function wγ = e−βB(γ)

where B(γ) is the number of bichromatic edges in γ plus the size of the edge boundary of γ
in G. A configuration of compatible polymers maps to a Potts configuration σ in which all
connected components of non-g-colored vertices have size at most M , and the weight of σ in
the Potts model is exactly the product of the weight functions of the polymers. The polymer
model partition function Z(G), with an appropriate choice of M , represents the contribution
to the Potts model partition function of colorings with dominant color g.

As with the hard-core model, there are two main computational problems associated to
a polymer model: approximate sampling from µG and approximate counting of Z(G). We
will approach them both via Markov chain algorithms. In general we will be interested in
families of polymer models defined on classes of graphs. We denote such a family (C(·), w,G),
where for each graph G ∈ G, (C(G), w) is a polymer model. We will always use n to denote
the number of vertices of a graph G.

We consider two conditions on the weight functions wγ and give their algorithmic
consequences.

I Definition 1. A polymer model (C(·), w,G) satisfies the polymer mixing condition if there
exists θ ∈ (0, 1) such that∑

γ′�γ
|γ′|wγ′ ≤ θ|γ| (2)

for all G ∈ G and all γ ∈ C(G).

We postpone the formal definition of mixing time to Section 2 and state our first main
result here.

I Theorem 2. Suppose that a polymer model (C(·), w,G) satisfies the polymer mixing condi-
tion (2). Then for each G ∈ G there is a Markov chain making single polymer updates with
stationary distribution µG and mixing time Tmix(ε) = O(n log(n/ε)).

Theorem 2 on its own does not guarantee an efficient algorithm for sampling from µG
because the Markov chain only yields an efficient sampling algorithm if we can implement
each step efficiently. We will show that under a stronger condition we can do this.

I Definition 3. A polymer model (C(·), w,G) is said to be computationally feasible if, for
each G ∈ G and each γ ∈ P(G), we can determine, in time polynomial in |γ|, whether
γ ∈ C(G), and compute wγ if it is.
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I Definition 4. A computationally feasible polymer model (C(·), w,G) with q spins on a class
G of graphs of maximum degree ∆ satisfies the polymer sampling condition with constant
τ ≥ 5 + 3 log((q − 1)∆) if

wγ ≤ e−τ |γ| (3)

for all G ∈ G and all γ ∈ C(G).

We have the following theorem.

I Theorem 5. If a computationally feasible polymer model (C(·), w,G) satisfies the polymer
sampling condition (3) then for all G ∈ G there is an ε-approximate sampling algorithm for
µG with running time O(n log(n/ε)).

Finally, we can use the sampling algorithm and simulated annealing to give a fast
approximate counting algorithm.

I Theorem 6. If a computationally feasible polymer model (C(·), w,G) satisfies the polymer
sampling condition (3) then for all G ∈ G there is a randomized ε-approximate counting
algorithm for Z(G) with running time O((n/ε)2 log2(n/ε)) and success probability at least 3/4.

Fernández, Ferrari, and Garcia [11] introduced a condition very similar to the polymer
mixing condition in the setting of polymer models on Zd. Their objective was to derive
probabilistic properties of polymer models directly, without going through the combinatorics
and complex analysis inherent in the cluster expansion for the log partition function. They
introduced a continuous time stochastic process whose stationary distribution was the infinite
volume Gibbs measure of their polymer model and their version of condition (2) implied an
exponentially fast rate of convergence of this process. They remarked that such an approach
had the potential to be an efficient computational tool.

Here we take an algorithmic point of view, and use the polymer mixing and sampling
conditions to show that a simple discrete time Markov chain mixes rapidly and can be used
to design efficient sampling and approximation algorithms. Our approach differs from that
of [11] in that while they are interested primarily in the probabilistic properties of spin
models on Zd, we are interested in algorithmic problems involving spin models on general
families of graphs. Our setting of discrete time processes on finite graphs is also more suitable
to studying algorithmic questions. Our work confirms the central point of [11]: that complex
analysis and absolute convergence of the cluster expansion is not necessary to derive many
important properties of a polymer model.

1.2 Applications

We apply our results for abstract polymer models to two specific examples: the ferromagnetic
Potts model and the hard-core model on expander graphs. To state these results we need
some definitions.

I Definition 7. Let α > 0. A graph G is an α-expander graph if for all S ⊂ V (G) with
|S| ≤ |V (G)|/2, we have e(S, Sc) ≥ α|S|, where Sc = V (G) \ S and e(S, Sc) is the number
of edges exiting the set S.

APPROX/RANDOM 2019



41:6 Fast Algorithms at Low Temperatures via Markov Chains

I Definition 8. The q-color ferromagnetic Potts model with parameter β > 0 is a random
assignment of q colors to the vertices of a graph defined by

µG,β(σ) = e−βm(G,σ)

ZG,β

where m(G, σ) is the number of bichromatic edges of G under the coloring σ and ZG,β =∑
σ e
−βm(G,σ) is the Potts model partition function. The parameter β is known as the inverse

temperature.

Jenssen, Keevash, and Perkins [16] gave an FPTAS and polynomial-time sampling
algorithm for the Potts model on expander graphs, with an algorithm based on the cluster
expansion and Barvinok’s method of polynomial interpolation. Under essentially the same
conditions on the parameters we give a Markov chain based sampling algorithm with near
linear running time.

I Theorem 9. Suppose q ≥ 2, ∆ ≥ 3 are integers and α > 0 is a real. Then for β ≥
5+3 log((q−1)∆)

α and any qe−n ≤ ε < 1, there is an ε-approximate sampling algorithm for
the q-state ferromagnetic Potts model with parameter β on all n-vertex α-expander graphs
of maximum degree ∆ with running time O(n log(n/ε)). There is also an ε-approximate
counting algorithm with running time O((n/ε)2 log2(n/ε)) and success probability at least 3/4.

I Definition 10. Let α ∈ (0, 1). A bipartite graph G = (V,E) with bipartition V = V 0 ∪ V 1

is a bipartite α-expander if, for i ∈ {0, 1} and all S ⊆ V i where |S| ≤ |V i|/2, we have
NG(S) ≥ (1 + α)|S| where NG(S) denotes the set of vertices that are adjacent to some
vertex in S.

Again we give a fast Markov chain based algorithm for sampling from the hard-core
model for essentially the same range of parameters for which an FPTAS is given in [16].

I Theorem 11. Suppose ∆ ≥ 3 is an integer and α ∈ (0, 1) is a real. Then for any
λ ≥ (3∆)6/α and 4e−n ≤ ε < 1, there is an ε-approximate sampling algorithm for the
hard-core model with parameter λ on all n-vertex bipartite α-expander graphs of maximum
degree ∆. There is also an ε-approximate counting algorithm for the hard-core model with
success probability at least 1− ε. Both algorithms run in time O((n/ε)2 log3(n/ε)).

The extra factor of n in the running time of the sampling algorithm for the hard-core
model as compared to the Potts model is due to the fact that the hard-core model on a
bipartite graph does not in general exhibit exact symmetry between the ground states, and
so we must approximate the partition functions of the even and odd dominant independent
sets to sample.

We can extend these algorithms to obtain fast sampling algorithms in most situations
in which a counting problem can be put in the framework of abstract polymer models. For
instance, we can use Theorems 5 and 6 to improve the running times of the algorithms
given by [17, 20] for sampling and counting proper q-colorings in ∆-regular bipartite graphs
(for large ∆). Section 5 of [17] gives a polymer model for proper q-colorings on ∆-regular
bipartite graphs. The polymer model is computationally feasible. They prove in Section 5.1
that it satisfies the Kotecký-Preiss condition – in fact, their proof establishes the polymer
sampling condition (3). Thus, we get the following corollary of Theorem 5 and 6.
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I Corollary 12. There is an absolute constant C > 0 so that for all even q ≥ 3, all
∆ ≥ Cq2 log2 q and all ε > e−n/(8q), there is an ε-approximate sampling algorithm to sample
a uniformly random proper q-coloring from a random ∆-regular bipartite graph running in
time O(n log(n/ε)). Furthermore, there is a randomized ε-approximation algorithm for the
number of proper q-colorings with running time O((n/ε)2 log2(n/ε)) and success probability
at least 3/4. For odd q, there are ε-approximate counting and sampling algorithms that both
run in time O((n/ε)2 log3(n/ε)).

As with independent sets, the extra factor of n in the running time for odd q comes from
the fact that the ground states (colorings in which one side of the bipartition is assigned
dq/2e colors and the other side bq/2c colors) are exactly symmetric only if q is even.

Finally, we remark that the approximate counting algorithms for these applications
based on truncating the cluster expansion can run faster than nO(log ∆) if the parameters
(expansion, fugacity, inverse temperature) are high enough (see [17, Theorem 8]), but the
sampling algorithms derived from this approach will not match the Õ(n) or Õ(n2) sampling
algorithms we obtain here.

1.3 Comparison to spin Glauber dynamics
A very natural idea to sample at low temperatures (large β for the Potts model, large λ for
the hard-core model) is to use a single-spin update Markov chain like the Glauber dynamics,
but to start in one of the ground states of the model chosen at random. For example, pick
one of the q-colors with equal probability then start the Potts model Glauber dynamics in the
monochromatic configuration with that color. The intuition is that the Glauber dynamics
will mix well within the portion of the state space close to the chosen ground state, and the
randomness in the choice of ground state will ensure that an accurate sample from the full
measure is obtained. Analyzing this algorithm was suggested in [14] and [16].

While we are not yet able to show that this algorithm succeeds, we make partial progress.
We show that Glauber dynamics, restricted to remain in a portion of the state space, mixes
rapidly (in polynomial time). It is easiest to state our result for the ferromagnetic Potts model.

For a ground state color g ∈ [q] and an integer M , let ΩgM (G) be the set of q-colorings of
the vertices of G so that every connected component of G colored with the palette of colors
[q] \ g is of size at most M . The set Ωg

M (G) consists of colorings that come from the valid
polymer configurations from Example 2 above. In [16] it is shown that for an appropriate
choice of M , the set {ΩgM (G)}g∈[q] forms an “almost partition” of the set of all colorings, in
that the weight of both the overlap of the almost partition and the set of colorings uncovered
by the almost partition is at most ε under the conditions of Theorem 9. In particular, an
ε-approximate sample from the Potts model restricted to Ωg

M (G) for M = O(log(n/ε)) is
enough (by symmetry) to obtain a (qε)-approximate sample from the Potts distribution µG,β
(cf. Lemma 28 of the full version). Using Markov chain comparison, we show in Section 5.3.1
of the full version that an efficient sampler can be obtained using the usual spin Glauber
dynamics restricted to remain in ΩgM (G).

I Theorem 13. Under the conditions of Theorem 9, and with M = O(log(n/ε)), the Glauber
dynamics restricted to ΩgM (G) has mixing time Tmix(ε) polynomial in n and 1/ε.

Theorem 13 shows that, despite the exponentially slow mixing of the Glauber dynamics
on the full state space, it can still be used by restricting the state space to obtain a
polynomial-time approximate sampling algorithm.

APPROX/RANDOM 2019
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In Section 5 of the full version, we give a result (Theorem 23) which is similar to
Theorem 13 but applies much more generally – to polymer models which satisfy the polymer
mixing condition and other mild conditions. We also obtain a similar theorem (Theorem 29)
specifically for the hard-core model.

We leave for future work two important extensions that would complete the picture: 1)
showing that unrestricted Glauber dynamics starting from a well chosen configuration works,
and 2) reducing the running time to O(n logn) from the large polynomial that we obtain in
the theorem.

2 Polymer models and Markov chains

In the full version, we show that the polymer sampling condition (3) implies the well-known
Kotecký–Preiss [18] condition

∑
γ′�γ e

|γ′|wγ′ ≤ |γ|. The Kotecký–Preiss condition, in turn,
implies the polymer mixing condition (2), which is weaker than the Kotecký–Preiss [18]
condition.

We next introduce the polymer Markov chain. For each v ∈ V (G), let A(v) = {γ ∈ C(G) :
v ∈ γ} denote the collection of all polymers containing v and let a(v) =

∑
γ∈A(v) wγ . By

applying (2) to the smallest γ′ containing v we have a(v) ≤ θ < 1 for all v ∈ V (G). Define the
probability distribution νv on A(v) ∪ {∅} by νv(γ) = wγ for γ ∈ A(v) and νv(∅) = 1− a(v).

The polymer dynamics on Ω are defined by the following transition rule from a configura-
tion Γt to a configuration Γt+1:

Polymer Dynamics

1. Choose v ∈ V (G) uniformly at random. Let γv ∈ Γt ∩ A(v) if Γt ∩ A(v) 6= ∅ and let
γv = ∅ otherwise. Note that γv is well defined since Γt can have at most one polymer
containing v.

2. Mutually exclusively do the following:
With probability 1

2 , let Γt+1 = Γt \ γv.
With probability 1

2 , sample γ from νv, set Γt+1 = Γt∪γ if this is in Ω and set Γt+1 = Γt
otherwise.

In the full version, we verify that the stationary distribution of the polymer dynamics is
µG by checking detailed balance. Recall that ifM is an ergodic Markov chain with transition
matrix P and stationary distribution ν then the mixing time ofM from a state x is given by

Tx(ε) = min{t > 0 | for all t′ ≥ t, ‖P t′(x, ·)− ν(·)‖TV ≤ ε},

where ‖ν′ − ν‖TV denotes the total variation distance between distributions ν and ν′. The
mixing time ofM is given by Tmix(ε) = maxx Tx(ε).

Proof of Theorem 2. We will show that under condition 2 the mixing time of the polymer
dynamics is O(n log(n/ε)) by applying the path coupling technique. We define a metric
D(·, ·) on Ω by setting D(Γ,Γ′) = 1 if Γ′ = Γ ∪ {γ} or Γ = Γ′ ∪ {γ} for a polymer γ and
extending this as a shortest path metric; i.e., D(Γ,Γ′) = |Γ4Γ′| for any Γ,Γ′ ∈ Ω where
4 denotes the symmetric difference of two sets. The diameter W of Ω under D(·, ·) is no
more than 2n.

Now suppose we couple two chains Xt and Yt by attempting the same updates in both
chains at each step. Suppose that Xt = Yt ∪{γ} for some polymer γ. With probability |γ|n ·

1
2

we pick v ∈ γ and remove γv which yields Xt+1 = Yt+1 = Xt. On the other hand, we may
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attempt to add a polymer γ′ � γ so that Yt ∪ {γ′} ∈ Ω. That is, Xt+1 = Xt = Yt ∪ {γ} and
Yt+1 = Yt∪{γ′}. This occurs with probability |γ

′|
n ·

1
2 ·wγ′ and in this case D(Xt+1, Yt+1) ≤ 2.

Putting these together we can bound

E[D(Xt+1, Yt+1)] ≤ 1 + 1
2n

−|γ|+ ∑
γ′�γ
|γ′|wγ′

 .
Using (2) we have

∑
γ′�γ |γ′|wγ′ ≤ θ|γ|, and so E[D(Xt+1, Yt+1)] ≤ 1−|γ| 1−θ2n ≤ 1− 1−θ

2n . By
the path coupling lemma (see [9, Section 6]), the mixing time is at most log(W/ε)2n/(1−θ) =
O(n log(n/ε)). J

To prove Theorem 5 we will show that a single update of the polymer dynamics can be
computed in constant expected time.

Assume the polymer sampling condition (3) holds with constant τ ≥ 5 + 3 log((q − 1)∆).
We will use the following algorithm. Let r = τ − 2− log((q− 1)∆) ≥ 3 + 2 log((q− 1)∆) and
let Ak(v) = {γ ∈ A(v) : |γ| ≤ k}.

Single polymer sampler

1. Choose k according to the following geometric distribution: for k a non-negative integer,
Pr[k = k] = (1− e−r)e−rk. This gives Pr[k ≥ k] = e−rk.

2. Enumerate all polymers in Ak(v) and compute their weight functions.
3. Mutually exclusively output γ ∈ Ak(v) with probability wγer|γ|, and with all remaining

probability output ∅. In particular if k = 0, then output ∅ with probability 1.

We now proceed to prove the following lemma.

I Lemma 16. Under the polymer sampling condition (3) the output distribution of the
single polymer sampler is νv and its expected running time is constant.

Proof. We first show that the probabilities wγer|γ| sum to less than 1, which shows the last
step of the sampling algorithm is well defined. Since τ − r = 2 + log((q − 1)∆),∑

γ∈A(v)

wγe
r|γ| ≤ 1

2
∑
k≥1

(e∆)k−1(q − 1)ke−τk+rk = 1
2e∆

∑
k≥1

e−k < 1,

where the first inequality uses the fact that, given a degree ∆ graph and a vertex v, there
are at most (e∆)k−1/2 connected size-k subgraphs containing v – a fact proved by Borgs,
Chayes, Kahn, and Lovász [5, Lemma 2.1].

We next show that the output of the algorithm has distribution νv. Given γ ∈ A(v), to
output γ we must choose k ≥ |γ|. This happens with probability e−r|γ| by the distribution of
k. Conditioned on choosing such a k, the probability we output γ is wγer|γ|, and multiplying
these probabilities together gives wγ as desired. Since this is true for all γ ∈ A(v), the output
distribution is exactly νv.

Finally we analyze the expected running time. To do this, we appeal to Lemma 3.7
of [23] which gives an algorithm with running time O(k5(e∆)2k) for listing all connected
subgraphs containing a given vertex v of size at most k (given a graph of degree at most ∆).
Consequently, conditioned on the event that k = k, the enumeration step of our algorithm
takes time O(k5(e∆)2k), and the time taken to determine which polymers are allowed and to
compute their weights is O(kc(q − 1)k(e∆)k−1/2) for some c > 0, since the polymer model is
computationally feasible. In expectation therefore, the running time is
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O

1 +
∑
k≥1

Pr[k = k]
(
k5(e∆)2k + kc(e(q − 1)∆)k

)
= O

1 +
∑
k≥1

e−rk kc(e(q − 1)∆)2k

 = O

1 +
∑
k≥1

kc e−(τ ′+1)k

 = O(1) ,

where τ ′ = τ − 5− 3 log((q − 1)∆) ≥ 0. J

Proof of Theorem 5. By Theorem 2, there is Tε = O(n log(n/ε)) so that if we start with
the empty configuration Γ0 = ∅ and run the polymer dynamics, then ΓTε has distribution
within ε/2 total variation distance of µG. By Lemma 16, in expectation the running time
will be O(n log(n/ε)), but we want an upper bound on the worst case running time as well.
To do this, we will simply stop the algorithm and output the empty configuration if the
total running time exceeds L for some L = O(n log(n/ε)) with a sufficiently large leading
constant. We next show that the probability that the algorithm terminates in L steps is at
most ε/2, which therefore yields that the output distribution has total variation distance at
most ε from µG.

The randomness in the running time comes from the choice of the geometric random
variable k at each step and the time taken to enumerate polymers in Ak(v). By the choice
of r, the random variable that takes the value k5(e∆)2k + kc(e(q − 1)∆)k with probability
(1− e−r)e−rk has exponential tails, and so a Chernoff bound shows that the probability that
the sum of Θ(n log(n/ε)) independent copies of such a random variable is at least twice its
expectation is bounded by e−Θ(n log(n/ε)) which is at most ε/2 (for large enough choice of
constants), finishing the proof. J

3 Approximate counting algorithm

In this section we show how to use a sampling oracle to approximately compute the partition
function of the polymer model. One standard way is by self-reducibility. In [14] an efficient
sampling algorithm for polymer models is derived from an efficient approximate counting
algorithm by applying self-reducibility on the level of polymers. While we could apply
polymer self-reducibility in the other direction to obtain counting algorithms from our
sampling algorithm, here we use the simulated annealing method instead (see [2, 15, 25]) to
obtain a faster implementation of counting from sampling.

Suppose that (C(G), w) is a computationally feasible polymer model. Let ρ be a parameter
and define a weight function wγ(ρ) = wγe

−ρ|γ| for all γ ∈ C(G). Then for each ρ ≥ 0 this
defines a computationally feasible polymer model (C(G), w(ρ)) on G, where setting ρ = 0
recovers the original model (C(G), w). If the original model (C(G), w) satisfies the polymer
sampling condition (3), then so does (C(G), w(ρ)) for every ρ ≥ 0 as the weight function
wγ(ρ) is monotone decreasing in ρ. Given the graph G, we write the partition function of
the polymer model (C(G), w(ρ)) as a function of ρ:

Z(ρ) = Z(G; ρ) =
∑
Γ∈Ω

∏
γ∈Γ

wγ(ρ) =
∑
Γ∈Ω

∏
γ∈Γ

wγe
−ρ|γ|.

The associated Gibbs distribution is denoted by µρ = µG;ρ. Since limρ→∞ wγ(ρ) = 0, we
have limρ→∞ Z(ρ) = 1 (only the empty configuration Γ contributes to this limit), and so we
will use simulated annealing to interpolate between Z(∞) = 1 and our goal Z(0), assuming
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access to a sampling oracle for (C(G), w(ρ)) for all ρ ≥ 0. To apply the simulated annealing
method, roughly speaking, we find a sequence of parameters 0 = ρ0 < ρ1 < · · · < ρ` < ∞
called a cooling schedule where ` ∈ N+, and then estimate Z(0) using the telescoping product

1
Z(0) = 1

Z(ρ0) = Z(ρ1)
Z(ρ0)

Z(ρ2)
Z(ρ1) · · ·

Z(ρ`)
Z(ρ`−1)

1
Z(ρ`)

.

To estimate each term Z(ρi+1)/Z(ρi), we define independent random variables Wi =∏
γ∈Γi

wγ(ρi+1)
wγ(ρi) , where Γi ∼ µρi . It is straightforward to see that E[Wi] = Z(ρi+1)/Z(ρi) (see

Lemma 17 of the full version, where we also require the variance). Using the sampling oracle
for µρi , we can sample Wi for all i, and by taking the product we get an estimate for 1/Z(0).

The key ingredient of simulated annealing is finding a good cooling schedule. There
are nonadaptive schedules [2] that depend only on n, and adaptive schedules [15, 25] that
also depend on the structure of Z(·). Usually the latter leads to faster algorithms than the
former. In this paper we use a simple nonadaptive schedule: ρi = i/n for i = 1, . . . , ` where
` = O(n log(n/ε)). We show that this cooling schedule already gives us a fast algorithm
for the polymer model. The reason behind it is that the weight function wγ(ρ) decays
exponentially fast, and so (see Lemma 18 of the full version) the partition function Z(ρ`)
is bounded by a constant when ρ` = O(logn), leading to a short cooling schedule. Our
algorithm is as follows.

Polymer approximate counting algorithm

1. Let ρi = i/n for i = 0, 1, . . . , ` where ` = dn log(4e(q − 1)∆n/ε)e;
2. For j = 1, . . . ,m where m =

⌈
64ε−2⌉:

a. For 0 ≤ i ≤ `− 1:
(i) Sample Γ(j)

i from µρi ;
(ii) Let W (j)

i =
∏
γ∈Γ(j)

i

e−|γ|/n;

b. Let W (j) =
∏`−1
i=0 W

(j)
i ;

3. Let Ŵ = 1
m

∑m
j=1W

(j) and output Ẑ = 1/Ŵ .

For 0 ≤ i ≤ ` − 1 we define Γi to be an independent random sample from µρi and
Wi =

∏
γ∈Γi e

−|γ|/n. Finally, we let W =
∏`−1
i=0 Wi.

Proof of Theorem 6. In this version, we assume that we have access to an exact sampler
Sexact that samples from µρ for all ρ ≥ 0 (in the full version we show how to adapt the
argument to the situation where we only have an approximate sampler). Using this sampler
in the Polymer approximate counting algorithm, we find that, for each j and each i, Γ(j)

i

is an exact sample from the distribution µρi and hence W (j)
i is an exact sample of Wi,

independently for every j and i. Thus, W (j) is a sample of W independently for every j, and
Ŵ is the sample mean of W (j)’s. We deduce from Lemmas 17 and 18 of the full version that

(1 + ε/2)E[W ] ≤ eε/2Z(ρ`)
Z(0) ≤ eε

Z(0) and (1− ε/2)E[W ] ≥ e−εZ(ρ`)
Z(0) ≥ e−ε

Z(0)

where we use 1 + ε/2 ≤ eε/2 and e−ε ≤ 1− ε/2 for all 0 < ε < 1. Then

Pr
(
e−ε

Z(0) ≤ Ŵ ≤
eε

Z(0)

)
≥ Pr

(∣∣∣Ŵ − E[W ]
∣∣∣ ≤ (ε/2)E[W ]

)
.
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By Chebyshev’s inequality we have

Pr
(∣∣∣Ŵ − E[W ]

∣∣∣ ≥ (ε/2)E[W ]
)
≤ 4 Var(W )
ε2m (E[W ])2 ≤

4(e− 1)
ε2m

≤ 1
8

where the second to last inequality follows from Lemmas 17 and 19 of the full version which
enable us to show that

Var(W )
(E[W ])2 = E[W 2]

(E[W ])2 − 1 = Z(0)
Z(ρ1)

Z(ρ`+1)
Z(ρ`)

− 1 ≤ e− 1.

Thus, we deduce that

Pr
(
e−εZ(0) ≤ Ẑ ≤ eεZ(0)

)
= Pr

(
e−ε

Z(0) ≤ Ŵ ≤
eε

Z(0)

)
≥ 7

8

(so the error probability is at most 1/8). Note that the number of samples that we
used is `m. Finally, we consider the running time of our algorithm. By Theorem 5, the
running time of step 2(a)(i) is O(n log(8`mn)) = O(n log(n/ε)), and for step 2(a)(ii) the
running time is O(n). Thus, the running time of the algorithm is upper bounded by
`m ·O(n log(n/ε)) = O((n/ε)2 log2(n/ε)). J

4 Applications

In this section, we prove Theorem 9 for the Potts model. The proof of Theorem 11 (for the
hard-core model) can be found in Section 4.2 of the full version. Throughout this section, we
will work under the assumptions/conditions of Theorem 9. That is, we fix a real number
α > 0, integers q ≥ 3 and ∆ ≥ 3 and a real number β ≥ 5+3 log((q−1)∆)

α . We let G be the
class of α-expander graphs G with maximum degree at most ∆.

Consider the polymer model defined in Example 2 on an n-vertex graph G ∈ G with
M = n/2 and ground state color g ∈ [q]. We will use Cg = Cg(G) to denote the polymers and
wgγ to denote the weight of a polymer γ ∈ Cg; recall that wgγ = e−βB(γ), where B(γ) counts
the number of external edges of γ plus the number of bichromatic internal edges. Let Zg(G)
be the partition function of the polymer model (Cg(G), wg).

I Lemma 20. Under the conditions of Theorem 9, the polymer model (Cg(·), wg,G) satisfies
the polymer sampling condition (3) with τ = αβ.

Proof. Since every G ∈ G is an α-expander, for γ ∈ Cg we have B(γ) ≥ α|γ| and hence
wgγ ≤ e−τ |γ|. J

I Lemma 21 ([17, Lemma 12]). For any n-vertex α-expander graph G and β ≥ 2 log(eq)/α,
qZg(G) is an e−n-approximation of the Potts partition function ZG,β.

Proof of Theorem 9. Let G be the class of α-expander graphs of maximum degree at most ∆.
Clearly, the polymer models (Cg(·), wg,G) are computationally feasible. By Lemma 20, the
models also satisfy the polymer sampling condition and therefore Theorems 5 and 6 apply.
Consider any n-vertex graph G ∈ G. Since β ≥ 5+3 log((q−1)∆)

α > 2 log(eq)
α , Lemma 21 applies

to G.
For the sampling algorithm, we pick a color g ∈ [q] uniformly at random and generate an

(ε/q)-approximate sample from the Gibbs measure associated to Zg(G) using the algorithm
of Theorem 5, in time O(n log(n/ε)). By Lemma 21, we conclude that the resulting output
is an ε-approximate sample for the Potts model.
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For the counting algorithm, we pick an arbitrary g ∈ [q] and produce using the algorithm
of Theorem 6 a number Ẑ in time O((n/ε)2 log2(n/ε)), which is an ε/(2q)-approximation to
Zg(G) with probability ≥ 3/4. By Lemma 21, we conclude that qẐ is an ε-approximation
for the partition function of the Potts model (with the same probability). J
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