4,213 research outputs found

    Lithography-Free, Omnidirectional, CMOS-Compatible AlCu Alloys for Thin-Film Superabsorbers

    Get PDF
    Superabsorbers based on metasurfaces have recently enabled the control of light at the nanoscale in unprecedented ways. Nevertheless, the sub‐wavelength features needed to modify the absorption band usually require complex fabrication methods, such as electron‐beam lithography. To overcome the scalability limitations associated with the fabrication of metallic nanostructures, engineering the optical response of superabsorbers by metal alloying is proposed, instead of tuning the geometry/size of the nanoscale building blocks. The superior performance of thin film AlCu alloys as the metallic component of planar bilayer superabsorbers is numerically demonstrated. This alloy outperforms its pure constituents as well as other metals, such as Ag, Au, and Cr. As a model system, a Si/AlCu structure is analyzed that presents \u3e99% absorption at selected wavelength ranging from the visible to the near‐infrared regions of the spectrum, depending on the subwavelength thickness of the semiconductor. The multi‐wavelength near‐unity absorption behavior of Si/AlCu persists even for oblique angle of incidence, up to 70°. Additionally, the findings are validated by fabricating and testing a‐Si/AlCu superabsorbers, where good agreement is found between the numerically and experimentally determined optical response. The system investigated here is relevant for integration in complementary metal‐oxide‐semiconductor (CMOS) technologies

    On a Testing Methodology for the Mechanical Property Assessment of a New Low-Cost Titanium Alloy Derived from Synthetic Rutile

    Get PDF
    Mechanical property data of a low-cost titanium alloy derived directly from synthetic rutile is reported. A small-scale testing approach comprising consolidation via field-assisted sintering technology, followed by axisymmetric compression testing, has been designed to yield mechanical property data from small quantities of titanium alloy powder. To validate this approach and provide a benchmark, Ti-6Al-4V powder has been processed using the same methodology and compared with material property data generated from thermo-physical simulation software. Compressive yield strength and strain to failure of the synthetic rutile-derived titanium alloy were revealed to be similar to that of Ti-6Al-4V

    Simulation Study on JLEIC High Energy Bunched Electron Cooling

    Get PDF
    In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during the collision at the collider ring. Different with other electron coolers using DC electron beam, the proposed electron cooler at the JLEIC ion collider ring uses high energy bunched electron beam, provided by an ERL. In this paper, we report some recent simulation study on how the electron cooling rate will be affected by the bunched electron beam properties, such as the correlation between the longitudinal position and momentum, the bunch size, and the Larmor emittance

    The detection of the imprint of filaments on cosmic microwave background lensing

    Full text link
    Galaxy redshift surveys, such as 2dF, SDSS, 6df, GAMA and VIPERS, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web. The majority of galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Since the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the first detection of CMB (Cosmic Microwave Background) lensing by filaments and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides a new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas which resides in the intergalactic medium and has so far evaded most observations

    Are Great Disks Defined by Satellite Galaxies in Milky-Way Type Halos Rare in Λ\LambdaCDM model?

    Full text link
    We study the spatial distribution of satellite galaxies by assuming that they follow the dark matter distribution. This assumption is supported by semi-analytical studies based on high-resolution numerical simulations. We find that for a Milky-Way type halo, if only a dozen satellite galaxies are observed, then they can lie on a ``great'' disk with an rms height of about 40 kpc. The normal to the plane is roughly isotropic on the sky. These results are consistent with the observed properties of the satellite galaxies in the Milky Way. If, however, the satellite galaxies follow the distribution of substructure selected by present mass, then great disks similar to the one in the Milky Way are rare and difficult to reproduce, in agreement with the conclusion reached by Kroupa et al. (2004).Comment: Major revised, new figure and text added, to appear in A&

    Magnetic susceptibility of EuTe/PbTe Heisenberg superlattices: experimental and theoretical studies

    Full text link
    We report results on the temperature dependence of the susceptibilities of a set of MBE-grown short-period EuTe/PbTe antiferromagnetic superlattices having different EuTe layer thicknesses. In-plane and orthogonal susceptibilities have been measured and display a strong anisotropy at low temperature, confirming the occurrence of a magnetic phase transition in the thicker samples, as seen also in neutron diffraction studies. We suggest that dipolar interactions stabilize antiferromagnetic long-range order in an otherwise isotropic system and we present numerical and analytical results for the low-temperature orthogonal susceptibility.Comment: 30 pages, 8 ps figures, RevTe

    A warped m=2 water maser disc in V778 Cyg?

    Full text link
    The silicate carbon star V778 Cyg is a source of 22 GHz water maser emission which was recently resolved by MERLIN. Observations revealed an elongated S-like structure along which the velocities of the maser features show a linear dependence on the impact parameter. This is consistent with a doubly-warped m=2 disc observed edge-on. Water masers and silicate dust emission (detected by IRAS and ISO) have a common origin in O-rich material and are likely to be co-located in the disc. We propose a detailed self-consistent model of a masing gas-dust disc around a companion to the carbon star in a binary system, which allows us to estimate the companion mass of 1.7 +- 0.1 M_sun, the disc radius of 40 +-3 AU and the distance between companions of about 80 AU. Using a dust-gas coupling model for water masing, we calculate the maser power self-consistently, accounting for both the gas and the dust energy balances. Comparing the simulation results with the observational data, we deduce the main physical parameters of the masing disc, such as the gas and dust temperatures and their densities. We also present an analysis of the stability of the disc.Comment: 7 pages, 5 figures. This paper is accepted for publication in MNRA

    What Are the Barriers and Motivators to Exercise in 50-65 Year-Old Adults?

    Get PDF
    Introduction. The benefit of exercise in adults has been well established. Research has demonstrated improved cardiovascular health, decreased bone fractures, and increased mental capacity. While the benefits of exercise has clearly been demonstrated, personal barriers to exercise are yet to be fully elucidated. Thus, in collaboration with the YMCA, this study aimed to clarify barriers to exercise in 50-65 year-old adults.https://scholarworks.uvm.edu/comphp_gallery/1085/thumbnail.jp
    • 

    corecore