137 research outputs found

    A new scaling property of turbulent flows

    Full text link
    We discuss a possible theoretical interpretation of the self scaling property of turbulent flows (Extended Self Similarity). Our interpretation predicts that, even in cases when ESS is not observed, a generalized self scaling, must be observed. This prediction is checked on a number of laboratory experiments and direct numerical simulations.Comment: Plain Latex, 1 figure available upon request to [email protected]

    Inhomogeneous turbulence in the vicinity of a large scale coherent vortex

    Full text link
    We study the statistics of turbulent velocity fluctuations in the neighbourhood of a strong large scale vortex at very large Reynolds number. At each distance from the vortex core, we observe that the velocity spectrum has a power law ``inertial range'' of scales and that intermittency -- defined as the variation of the probability density function (PDF) of velocity increments as the length of the increment is varied -- is also present. We show that the spectrum scaling exponents and intermittency characteristics vary with the distance to the vortex. They are also influenced by the large scale dynamics of the vortex.Comment: submitted to europhys lett, 6 pages, 5 figure

    Intermittency of velocity time increments in turbulence

    Get PDF
    We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the "dynamic" case); (ii) the time evolution of tracers advected by a frozen turbulent field (the "static" case), and (iii) the evolution in time of the velocity recorded at a fixed location in an evolving Eulerian velocity field, as it would be measured by a local probe (referred to as the "virtual probe" case). We observe that the static case and the virtual probe cases share many properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR

    The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S

    Full text link
    Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.Comment: 14 pages, 10 figures (5 color), accepted for publication in Ap

    Experimental assessment of a new form of scaling law for near-wall turbulence

    Full text link
    Scaling laws and intermittency in the wall region of a turbulent flow are addressed by analyzing moderate Reynolds number data obtained by single component hot wire anemometry in the boundary layer of a flat plate. The paper aims in particular at the experimental validation of a new form of refined similarity recently proposed for the shear dominated range of turbulence, where the classical Kolmogorov-Oboukhov inertial range theory is inappropriate. An approach inspired to the extended self-similarity allows for the extraction of the different power laws for the longitudinal structure functions at several wall normal distances. A double scaling regime is found in the logarithmic region, confirming previous experimental results. Approaching the wall, the scaling range corresponding to the classical cascade-dominated range tends to disappear and, in the buffer layer, a single power law is found to describe the available range of scales. The double scaling is shown to be associated with two different forms of refined similarity. The classical form holds below the shear scale L s . The other, originally introduced on the basis of DNS data for a turbulent channel, is experimentally confirmed to set up above L s . Given the experimental diffulties in the evaluation of the instantaneous dissipation rate, some care is devoted to check that its one-dimensional surrogate does not bias the results. The increased intermittency as the wall is approached is experimentally found entirely consistent with the failure of the refined Kolmogorov-Oboukhov similarity and the establishment of its new form near the wall.Comment: 27 pages, 9 figure

    Relation between the luminosity of young stellar objects and their circumstellar environment

    Get PDF
    We present a new model-independent method of comparison of NIR visibility data of YSOs. The method is based on scaling the measured baseline with the YSO's distance and luminosity, which removes the dependence of visibility on these two variables. We use this method to compare all available NIR visibility data and demonstrate that it distinguishes YSOs of luminosity >1000L_sun (low-L) from YSOs of <1000L_sun (high-L). This confirms earlier suggestions, based on fits of image models to the visibility data, for the difference between the NIR sizes of these two luminosity groups. When plotted against the ``scaled'' baseline, the visibility creates the following data clusters: low-L Herbig Ae/Be stars, T Tauri stars, and high-L Herbig Be stars. The T Tau cluster is similar to the low-L Herbig Ae/Be cluster, which has ~7 times smaller ``scaled'' baselines than the high-L Herbig Be cluster. We model the shape and size of clusters with different image models and find that low-L Herbig stars are the best explained by the uniform brightness ring and the halo model, T Tauri stars with the halo model, and high-L Herbig stars with the accretion disk model. However, the plausibility of each model is not well established. Therefore, we try to build a descriptive model of the circumstellar environment consistent with various observed properties of YSOs. We argue that low-L YSOs have optically thick disks with the optically thin inner dust sublimation cavity and an optically thin dusty outflow above the inner disk regions. High-L YSOs have optically thick accretion disks with high accretion rates enabling gas to dominate the NIR emission over dust. Although observations would favor such a description of YSOs, the required dust distribution is not supported by our current understanding of dust dynamics.Comment: 20 pages, 12 figures, Accepted for publication in the Astrophysical Journa

    Water in Star-Forming Regions with the Herschel Space Observatory (WISH): Overview of key program and first results

    Get PDF
    `Water In Star-forming regions with Herschel' (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structure of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted covering a wide range of luminosities and evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, H218O and chemically related species. An overview of the scientific motivation and observational strategy of the program is given together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained which have profound implications for our understanding of grain growth and mixing in disks.Comment: 71 pages, 10 figures, PASP, in pres

    New results on solar neutrino fluxes from 192 days of Borexino data

    Full text link
    We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI
    corecore