We analyze the statistics of turbulent velocity fluctuations in the time
domain. Three cases are computed numerically and compared: (i) the time traces
of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the
"dynamic" case); (ii) the time evolution of tracers advected by a frozen
turbulent field (the "static" case), and (iii) the evolution in time of the
velocity recorded at a fixed location in an evolving Eulerian velocity field,
as it would be measured by a local probe (referred to as the "virtual probe"
case). We observe that the static case and the virtual probe cases share many
properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is
clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR