
Intermittency of Velocity Time Increments in

Turbulence
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Intermittency of Velocity Time Increments in Turbulence

L. Chevillard, S. G. Roux, E. Lévêque, N. Mordant,* J.-F. Pinton, and A. Arnéodo
Laboratoire de Physique, CNRS & École Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France

(Received 23 December 2004; published 5 August 2005)

We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are
computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent
flow (referred to as the dynamic case); (ii) the time evolution of tracers advected by a frozen turbulent field
(the static case); (iii) the evolution in time of the velocity recorded at a fixed location in an evolving
Eulerian velocity field, as it would be measured by a local probe (referred to as the virtual probe case). We
observe that the static case and the virtual probe cases share many properties with Eulerian velocity
statistics. The dynamic (Lagrangian) case is clearly different; it bears the signature of the global dynamics
of the flow.

DOI: 10.1103/PhysRevLett.95.064501 PACS numbers: 47.27.Gs, 02.50.Ey, 47.53.+n

One of the distinctive feature of turbulence is the devel-
opment of an extremely high fluctuation level at small
scales. The probability density functions of velocity incre-
ments are stretched at small scales, while they are almost
Gaussian at large scale where energy is fed into the flow
[1]. This evolution is traditionally referred to as ‘‘intermit-
tency’’ in turbulence studies. Numerous studies have been
devoted to the study of intermittency in the spatial domain,
analyzing velocity differences between two points sepa-
rated by a variable distance r. For instance, it is now well
established that when the velocity increments are com-
puted along the distance r, the longitudinal velocity incre-
ments are skewed and the structure functions have
universal relative scaling exponents in the inertial range
[2–4], related to the graininess of the dissipation. When
the increments are related to changes in the velocity com-
ponent perpendicular to the distance r, the corresponding
transverse structure functions display a different scaling,
related to the spatial distribution of vorticity [5]. In con-
trast, there have been much fewer studies of intermittency
in the time domain, i.e., related to changes in time of the
velocity field. Two cases are of particular importance: the
Lagrangian one, which pertains to the fluctuations in time
of the velocity of marked fluid particles, and the Eulerian
one, where one considers the variations in time of the
velocity measured at a fixed location in the flow. We
consider of course the case where turbulence develops in
the absence of a mean flow; otherwise Taylor’s hypothesis
trivially reduces the second case to a spatial measurement
[6]. Eulerian time fluctuations are different because one
expects, after Tennekes’s original suggestion [7], that
sweeping (the random advection by large-scale motion)
plays an important role. In practice, Eulerian intermittency
in time is relevant for stationary bodies exposed to turbu-
lent flow conditions (atmospheric ones, for instance).
Lagrangian intermittency, on the other hand, has strong
implications for processes such as mixing [8], combustion
[9], or cloud formation [10]. Lagrangian data have recently
been made available in numerical simulations [11,12] and
experimental measurements [13–15]. One rather unex-

pected feature is the observation of long-time correlations
in the Lagrangian dynamics [16]. It has been incorporated
in recent stochastic models of Lagrangian acceleration
[17,18]; see also [19] for a recent review. However, the
full modelization of Lagrangian velocity fluctuations is
still in progress. Lagrangian statistics is often computed
from the advection of particles in a frozen Eulerian field (to
minimize computing overhead). We have thus decided to
compare this pseudo-Lagrangian statistics to that of pure
Lagrangian and Eulerian time fluctuations.

We study the problem numerically. First, we compute
the velocity changes of fluid particles that are advected by a
frozen 3D Eulerian velocity field; that is, we consider a
single snapshot of a converged turbulent flow, and use it to
advect fluid particles in this frozen Eulerian field—we call
this the static case. Then, we compute the velocity varia-
tions of true Lagrangian particles, a situation in which the
Eulerian flow is also evolved in time according to the
Navier-Stokes equations—this case is called the dynamic
case. Finally, we record the time evolution of the Eulerian
velocity at fixed locations of the computation domain, as it
would be measured by virtual velocity probes. We then
perform a comparative study of the intermittency charac-
teristics of the three velocity time signals. We show that the
statistics of time velocity increments depends on the situ-
ation considered: the static case and the virtual probes
display intermittency features that are reminiscent of
Eulerian velocity statistics; the former has multifractal
spectra identical to the ones measured for 3D Eulerian
turbulence [20], while the later coincides with traditional
longitudinal Eulerian velocity increments statistics [1].
The dynamic case, which is a true Lagrangian measure-
ment, displays significantly more intermittent features.

The Navier-Stokes equations are integrated in a 2563

cubic domain of size 2� by a parallel distributed memory
pseudospectral solver, using a second-order (in time) leap-
frog scheme. The large-scale kinetic-energy forcing is
adjusted at each time step by scaling the amplitudes of
modes 1:5 � k < 2:5 uniformly (phases are left to fluctu-
ate freely), so as to compensate exactly the losses due to
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eddy dissipation in the kinetic-energy budget [21]. The
Reynolds number based on the Taylor microscale is R� �
140. The velocity root mean square is 0:1214 m=s, the
mean dissipation rate is � � 0:0011 m2=s3, and the kine-
matic viscosity is � � 1:5� 10�4 m2=s. The particles tra-
jectories are resolved in time by a second-order Runge-
Kutta scheme, and interpolated using cubic spline func-
tions. In the dynamic case, a set of 10 000 particles, uni-
formly distributed in the cube at initial time, is followed for
a duration of approximately 7TL. Here, as in [22], TL is
defined for each signal as the time scale above which the
velocity statistics is Gaussian (the second-order cumulant
has reached the Gaussian value �2=8). For the static case,
10 000 trajectories have been integrated over approxi-
mately 3TL. Finally, 32 768 virtual probes have been
used to get the time variation of the Eulerian field at a
fixed location; in this case, the records are 10 TL long. We
label vD;i�t� the Lagrangian velocity of one component (in
Cartesian coordinates) of particle number i in the 3D
Eulerian time-evolving flow (dynamic case), vS;i�t� one
component of the velocity advected by the static Eulerian
flow (static case), and vT;i�t� the time evolution of one
component of an Eulerian velocity probe.

In Fig. 1 we show the power spectral densities
hjv̂S�!�j2i, hjv̂D�!�j2i, and hjv̂T�!�j2i vs !TL in a loga-
rithmic representation, where v̂ means Fourier transform
of v, for the static and dynamic cases (averaged over the
number of tracked particles) and for the virtual fixed
probes (averaged over the number of probes). One ob-
serves for all cases a scaling behavior on a small range
of scales. We show in the inset the values of the corre-
sponding power law exponent determined from the local
logarithmic slope of the spectra. The dynamic Lagrangian
velocity spectrum has an !�2 inertial range spectrum, as

expected from Kolmogorov similarity arguments [23] and
in agreement with previous experimental and numerical
observations [15]. The spectrum of the time variation of
the Eulerian velocity field (as recorded by the virtual
probes) shows a clear �5=3 scaling exponent, character-
istic of Eulerian data [1]. This is in good agreement with
Tennekes’s sweeping argument [7,24]: the characteristic
velocity fluctuations at scale ‘ are the standard deviation
of the flow velocity vrms �

��������������hjvSj2i
p

rather than the
Kolmogorov one v‘ � ��‘�1=3. As a result, a time-scale
increment � corresponds to a length ‘ � vrms�, so that the
scaling of the increments is in fact Eulerian. In addition,
this effect produces a larger inertial range because the
dissipative time scale is TLR

�3=2
� for the Eulerian time

data, while it is TLR�1
� for the dynamic Lagrangian data.

Figure 1 then shows that the data in the static case also
follow a �5=3 scaling law, closer to the Eulerian behavior
than to the Lagrangian one. This result has also been found
in a similar study using kinematic simulations of turbu-
lence [25], a situation in which the Eulerian velocity field is
monofractal, i.e., not intermittent. Let us mention that
since inertial range statistics are likely to be independent
on the Reynolds number, we consider the behavior of our
estimators in the inertial range (i.e., power spectra in Fig. 1
and cumulants of magnitude in Fig. 2) as characteristics of
fully developed turbulence—despite the moderate
Reynolds number value of our direct numerical simulation
(R� ’ 140).

We now seek to quantify the intermittency features. This
is usually done via the analysis of the scaling behavior of
velocity structure functions [1] S�p; �� � hj��vjpi �
hjv�t� �� � v�t�jpi 	 ��p , where the average is computed
over all accessible times t and over all recorded time series.
Note that we use the absolute value of velocity increments
in the definition of the structure functions since the statis-
tics that are studied are symmetric under the transforma-
tion ��v ! ���v: velocity increment statistics are not
skewed. However, as advocated in [26] for Eulerian veloc-
ity data analysis, the magnitude cumulant analysis pro-
vides a more reliable alternative to the structure function
method. The relationship between the moments of j��vj
and the cumulants Cn��� of lnj��vj reads

hj��vjpi � exp
�X1
n�1

Cn���p
n

n!

�
: (1)

Previous studies [15,16,22] have shown that intermittency
is suitably described for small p using a log-normal statis-
tical framework corresponding to a quadratic �p spectrum:

�p � c1p� c2
p2

2
; (2)

where the parameters c1 and c2 can be extracted from the
time-scale behavior of the first two cumulants C1��� and
C2���. In Eulerian context, the analysis of longitudinal
velocity increments in the inertial range has shown that
CE
2 �‘� � �cE2 ln�‘=L�, where ‘ is a spatial scale and L the
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FIG. 1. Power spectral density E�!TL� of one component of
the velocity of tracer particles in the static (�) and dynamic (
)
cases, and for the virtual Eulerian probes (�). Spectra have been
shifted vertically for clarity. The local slopes of these spectra are
plotted in the inset.
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decorrelation length, with a universal intermittency coef-
ficient cE2 � 0:025 [4,26].

We report in Fig. 2 the results of a comparative analysis
of the cumulants CS;D;T

1 ��� and CS;D;T
2 ���. The profile of

CD
1 ��� as a function of ln��=TL� is significantly curved, a

feature that has also been observed in experimental data of
Lagrangian velocity structure functions [15]. This depar-
ture from scaling is a signature of (i) the pollution of the
inertial range by dissipative (finite Reynolds number) ef-
fects as studied in [22] and (ii) the nonuniversal and/or
anisotropic behavior of the turbulent flow at scales of the
order of the integral time scale TL. In Fig. 2(a), we have
indicated by a dashed line the scaling behavior CD

1 ��� �
cD1 ln��=TL�, with cD1 � hhi ’ 1=2 corresponding to a
�!TL��2 scaling region in the power spectrum (we recall
that h ’ 1=2 corresponds to the most probable velocity
scaling exponent in a multifractal analysis of Lagrangian
intermittency [16,22]). In contrast, the first order cumulant
for the static case and for the Eulerian velocity time vari-

ations is better represented by CS;T
1 ��� � cS;T1 ln��=TL�,

with cS;T1 �hhi�1=3, as indicated by the solid line in
Fig. 2(a). Again, this value is consistent with the
�!TL��5=3 power spectrum behavior observed in Fig. 1.
As it is also the case for Eulerian fields [4,26], the second-
order cumulants [Fig. 2(b)] has a logarithmic behavior in
the inertial range, CS;D;T

2 ��� � �cS;D;T
2 ln��=TL�. In the

dynamic case, we get cD2 ’ 0:08, in good agreement with
previous experimental data [22] and numerical simula-
tions [12].

The static case and the Eulerian time probes follow the
same behavior, with cS2 ’ 0:046 and cT2 ’ 0:03. The first
value is in good agreement with the recent estimate of the
intermittency coefficient cE;3D2 � 0:049 of a numerical 3D
Eulerian velocity field [20]. Note that cE;3D2 is significantly
larger than the value cE2 ’ 0:025 computed for longitudinal
velocity increments, to which one should compare the
estimate of the intermittency coefficient cT2 of the time
variations of the Eulerian longitudinal velocity component.
As a technical but important point, we stress that the values
of c2 reported here are not computed from a linear regres-
sion fit in the C2��� curves (due to the narrowness of the
inertial range) but as a result of the mutifractal description
of the entire range of scales, dissipative domain included,
as detailed in [22].

We thus conclude that the static and Eulerian inter-
mittences in time have identical statistics to, respectively,
3D and 1D Eulerian fields, while the true dynamic
(Lagrangian) case is clearly different and more intermit-
tent. This is confirmed in Fig. 3 where the more familiar

2 4 6
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2

p

ζ p
/

ζ 2

FIG. 3. Structure function exponent �p=�2 vs p as computed
for the static case (�), the dynamic (
) case, and the Eulerian
time probes (�). Also shown for comparison are the exponents
obtained for Lagrangian velocity experiments (�) [15], 3D
Eulerian velocity fluctuations obtained by DNS (5) [20], ex-
perimental 1D Eulerian longitudinal velocity increments (4)
[4], and passive scalar increments (*) [29]. The solid, dash-
dotted, and dashed lines correspond to the quadratic �p spectra
[Eq. (2)] with the parameter values �cS1 � 1=3; cS2 � 0:046�,
�cT1 � 0:3; cT2 � 0:03�, and �cD1 � 1=2; cD2 � 0:085�.
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FIG. 2. Cumulants of velocity magnitude for the static (�) and
dynamic (
) cases, and for the virtual Eulerian probes (�).
(a) CS;D;T

1 ��� vs ln��=TL�; the solid and dashed lines correspond
to the slopes cS;T1 � 1=3 and cD1 � 1=2, respectively; for the sake
of clarity, we have subtracted hlnj�TL

vji. (b) CS;D;T
2 ��� vs

ln��=TL�; the solid, dash-dotted, and dashed lines correspond
to the slopes cS2 � 0:046, cT2 � 0:03, and cD2 � 0:08, respec-
tively; we have subtracted Var�lnj�TL

vj � �2=8 and also
shifted the upper curves by 0.1 and 0.2 for clarity.
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structure function exponents �p are compared. Note that, in
order to be able to compare Eulerian and Lagrangian data,
all exponents are computed using the second-order struc-
ture function as a reference (extended self-similarity ansatz
[27]) in order (i) to overcome the observed bending of the
structure functions when plotted vs the time scale in a
logarithmic representation [as already noticed in Fig. 2(a)
for the first cumulant C1���], and (ii) to give a clear pic-
ture of intermittency effects responsible for departure
from a linear behavior (i.e., �Dp �p=2 and �Tp ; �

S
p � p=3).

Thus, in this representation, each �q spectrum must be
compared to the monofractal Kolmogorov prediction �p �
p=2. As the size of the statistical ensemble available is
limited, we restrict ourselves to moments of order p up to
6. The values obtained are in agreement with a parabolic
spectrum [Eq. (2)] when fixing the parameters c1 and c2 to
the values previously estimated from the magnitude cumu-
lants and autocorrelation functions. In Fig. 3, also shown
for comparison, are the �p spectra obtained for experimen-
tal Lagrangian velocity measurements, experimental
Eulerian longitudinal increments, and the full 3D numeri-
cal Eulerian velocity multifractal analysis. Once again, the
static and Eulerian time behavior are identical, respec-
tively, to that of the 3D numerical Eulerian velocity [20]
and to the traditional 1D longitudinal velocity increments
[4]. But they are both less intermittent than observed for
the dynamic case, i.e., for the Lagrangian velocity field. A
detailed account of the relationship between Eulerian and
Lagrangian intermittences, in the framework originally
proposed by Borgas [28], has been previously discussed
in [22]. Finally, another quite noteworthy feature in Fig. 3
is that the exponents for the passive scalar increments are
identical to that of the Lagrangian velocity statistics
(within error bars).

To summarize our findings, we have observed that the
statistics of particles advected in a frozen Eulerian field is,
to some extent, similar to that of the time variations of the
Eulerian velocity at fixed points in space. This is an ergo-
dicity property of homogeneous, isotropic turbulence. The
similarity of the static case and the full 3D Eulerian field
could prove useful because local variations in time are way
easier to measure than full spatial 3D flows. However, it is
again absolutely necessary that the mean flow be truly
absent, otherwise local time variations relate to spatial
profiles, using Taylor’s hypothesis [6,23]. Finally, the in-
termittency measured in the dynamics case is different,
showing that true Lagrangian particles are sensitive to the
global time evolution of the flow. One eventually expects
that the large-scale dynamics is even more crucial in under-
standing mixing effects in real nonhomogeneous flows.

This work is supported by the French Ministère de la
Recherche (ACI) and the Centre National de la Recherche
Scientifique under GDR Turbulence. Numerical simula-
tions are performed at CINES (France) using an IBM SP
computer.
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[3] Z. S. She and E. Lévêque, Phys. Rev. Lett. 72, 336 (1994).
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