164 research outputs found

    High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: growth conditions, strain relaxation and In incorporation kinetics

    Full text link
    We report the interplay between In incorporation and strain relaxation kinetics in high-In-content InxGa1-xN (x = 0.3) layers grown by plasma-assisted molecular-beam epitaxy. For In mole fractions x = 0.13-0.48, best structural and morphological quality is obtained under In excess conditions, at In accumulation limit, and at a growth temperature where InGaN decomposition is active. Under such conditions, in situ and ex situ analysis of the evolution of the crystalline structure with the growth thickness points to an onset of misfit relaxation after the growth of 40 nm, and a gradual relaxation during more than 200 nm which results in an inhomogeneous strain distribution along the growth axis. This process is associated with a compositional pulling effect, i.e. indium incorporation is partially inhibited in presence of compressive strain, resulting in a compositional gradient with increasing In mole fraction towards the surface

    Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction

    Get PDF
    We study electron molecules in realistic vertically coupled quantum dots in a strong magnetic field. Computing the energy spectrum, pair correlation functions, and dynamical form factor as a function of inter-dot coupling via diagonalization of the many-body Hamiltonian, we identify structural transitions between different phases, some of which do not have a classical counterpart. The calculated Raman cross section shows how such phases can be experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e, Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter

    Enhancing single-molecule photostability by optical feedback from quantum-jump detection

    Full text link
    We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level

    Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analyzing the local indium distribution in rough samples of InGaN alloy layers

    Get PDF
    We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction

    Combination of electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy to determine indium concentration in InGaN thin film structures

    Get PDF
    We demonstrate a method to determine the indium concentration, x, of In x Ga1-x N thin films by combining plasmon excitation studies in electron energy-loss spectroscopy (EELS) with a novel way of quantification of the intensity of x-ray lines in energy-dispersive x-ray spectroscopy (EDXS). The plasmon peak in EELS of InGaN is relatively broad. We fitted a Lorentz function to the main plasmon peak to suppress noise and the influence from the neighboring Ga 3d transition in the spectrum, which improves the precision in the evaluation of the plasmon peak position. As the indium concentration of InGaN is difficult to control during high temperature growth due to partial In desorption, the nominal indium concentrations provided by the growers were not considered reliable. The indium concentration obtained from EDXS quantification using Oxford Instrument ISIS 300 x-ray standard quantification software often did not agree with the nominal indium concentration, and quantification using K and L lines was inconsistent. We therefore developed a self-consistent iterative procedure to determine the In content from thickness-dependent k-factors, as described in recent work submitted to Journal of Microscopy. When the plasmon peak position is plotted versus the indium concentration from EDXS we obtain a linear relationship over the whole compositional range, and the standard error from linear least-squares fitting shows that the indium concentration can be determined from the plasmon peak position to within Δx = ± 0.037 standard deviation

    Illustration of quantum complementarity using single photons interfering on a grating

    Full text link
    A recent experiment performed by S. S. Afshar et al. has been interpreted as a violation of Bohr's complementarity principle between interference visibility and which-path information in a two-path interferometer. We have reproduced this experiment, using true single-photon pulses propagating in a two-path wavefront- splitting interferometer realized with a Fresnel's biprism, and followed by a grating with adjustable transmitting slits. The measured values of interference visibility V and which-path information, characterized by the distinguishability parameter D, are found to obey the complementarity relation V^2+D^2=<1. This result demonstrates that the experiment can be perfectly explained by the Copenhagen interpretation of quantum mechanics.Comment: 11 pages, 5 figure

    Phosphoribulokinase abundance is not limiting the Calvin-Benson-Bassham cycle in Chlamydomonas reinhardtii

    Get PDF
    Improving photosynthetic efficiency in plants and microalgae is of utmost importance to support the growing world population and to enable the bioproduction of energy and chemicals. Limitations in photosynthetic light conversion efficiency can be directly attributed to kinetic bottlenecks within the Calvin-Benson-Bassham cycle (CBBC) responsible for carbon fixation. A better understanding of these bottlenecks in vivo is crucial to overcome these limiting factors through bio-engineering. The present study is focused on the analysis of phosphoribulokinase ( PRK) in the unicellular green alga Chlamydomonas reinhardtii. We have characterized a PRK knock-out mutant strain and showed that in the absence of PRK, Chlamydomonas cannot grow photoautotrophically while functional complementation with a synthetic construct allowed restoration of photoautotrophy. Nevertheless, using standard genetic elements, the expression of PRK was limited to 40% of the reference level in complemented strains and could not restore normal growth in photoautotrophic conditions suggesting that the CBBC is limited. We were subsequently able to overcome this initial limitation by improving the design of the transcriptional unit expressing PRK using diverse combinations of DNA parts including PRK endogenous promoter and introns. This enabled us to obtain strains with PRK levels comparable to the reference strain and even overexpressing strains. A collection of strains with PRK levels between 16% and 250% of WT PRK levels was generated and characterized. Immunoblot and growth assays revealed that a PRK content of approximate to 86% is sufficient to fully restore photoautotrophic growth. This result suggests that PRK is present in moderate excess in Chlamydomonas. Consistently, the overexpression of PRK did not increase photosynthetic growth indicating that that the endogenous level of PRK in Chlamydomonas is not limiting the Calvin-Benson-Bassham cycle under optimal conditions

    Search for Direct CP Violation in Non-Leptonic Decays of Charged Ξ\Xi and Λ\Lambda Hyperons

    Full text link
    A search for direct CP violation in the non-leptonic decays of hyperons has been performed. In comparing the product of the decay parameters, αΞαΛ\alpha_{\Xi}\alpha_{\Lambda}, in terms of an asymmetry parameter, AΞΛA_{\Xi\Lambda}, between hyperons and anti-hyperons in the charged Ξ→Λπ\Xi \to \Lambda \pi and Λ→pπ\Lambda \to p \pi decay sequence, we found no evidence of direct CP violations. The parameter AΞΛA_{\Xi\Lambda} was measured to be 0.012±0.0140.012 \pm 0.014.Comment: Submitted for publication; RevTex, 13 pages, 4 figure

    Neutral weak currents in pion electroproduction on the nucleon

    Get PDF
    Parity violating asymmetry in inclusive scattering of longitudinally polarized electrons by unpolarized protons with π0\pi^0 or π+\pi^+ meson production, is calculated as a function of the momentum transfer squared Q2Q^2 and the total energy WW of the πN\pi N-system. This asymmetry, which is induced by the interference of the one-photon exchange amplitude with the parity-odd part of the Z0Z^0-exchange amplitude, is calculated for the γ∗(Z∗)+p→N+π\gamma^*(Z^*)+p\to N+\pi processes (γ∗\gamma^* is a virtual photon and Z∗Z^* a virtual Z-boson) considering the Δ\Delta-contribution in the s−s-channel, the standard Born contributions and vector meson (ρ\rho and ω\omega) exchanges in the t−t-channel. Taking into account the known isotopic properties of the hadron electromagnetic and neutral currents, we show that the P-odd term is the sum of two contributions. The main term is model independent and it can be calculated exactly in terms of fundamental constants. It is found to be linear in Q2Q^2. The second term is a relatively small correction which is determined by the isoscalar component of the electromagnetic current. Near threshold and in the Δ\Delta-region, this isoscalar part is much smaller (in absolute value) than the isovector one: its contribution to the asymmetry depend on the polarization state (longitudinal or transverse) of the virtual photon.Comment: 30 pages 9 figure

    Measurement of Decay Parameters for Ξ−→Λπ−\Xi^{-} \to \Lambda \pi^{-} Decay

    Full text link
    Based on 1.35 million polarized Ξ−\Xi^{-} events, we measure the parameter ϕΞ\phi_{\Xi} to be −1.61∘±2.66∘±0.37∘-1.61^{\circ} \pm 2.66^{\circ} \pm 0.37^{\circ} for Ξ−→Λπ−\Xi^{-} \to \Lambda \pi^{-} decay. New results for the parameters ÎČΞ\beta_{\Xi} and γΞ\gamma_{\Xi} are also presented. Assuming that the CP-violating phase-shift difference is negligible, we deduce the strong phase-shift difference between the P-wave and S-wave amplitudes of the Λπ\Lambda\pi final state to be 3.17∘±5.28∘±0.73∘3.17^{\circ} \pm 5.28^{\circ} \pm 0.73^{\circ}. This strong phase-shift difference reduces the theoretical uncertainty in estimating the level of CP violation in Ξ\Xi-hyperon decay.Comment: To be published in Physical Review Letter
    • 

    corecore