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Raman signatures of classical and quantum phases
in coupled dots: A theoretical prediction
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PACS. 73.21.La – Quantum dots.

PACS. 73.20.Qt – Electron solids.
PACS. 73.43.Nq – Quantum phase transitions.

Abstract. – We study electron molecules in realistic vertically coupled quantum dots in a
strong magnetic field. Computing the energy spectrum, pair correlation functions, and dy-
namical form factor as a function of inter-dot coupling via diagonalization of the many-body
Hamiltonian, we identify structural transitions between different phases, some of which do not
have a classical counterpart. The calculated Raman cross-section shows how such phases can
be experimentally singled out.

Electron systems form a Wigner crystal at sufficiently low density or high magnetic
field B [1]. Theoretical [2, 3] and experimental [4, 5] studies suggest that lowering dimen-
sionality favors localization: in this perspective interacting electrons confined in a quantum
dot (QD) [6], sometimes called Wigner molecules [7], are interesting in their own right [8, 9],
due to the interplay between the electron-electron repulsion and the confining potential. This
leads to a complex zero-temperature phase diagram [10], as compared to the infinite-layer
case, as well as to complex melting mechanisms [9]. The formation of coupled QDs (artificial
molecules) introduces qualitatively new physics [11]. New energy scales appear —inter-dot
tunneling, inter- vs. intra-dot Coulomb correlation— whose balance controls the phase dia-
gram [12]. Significantly, these parameters can be tuned by inter-dot distance d and/or electron
density, so that the nature of these few-particle systems and their phases can be explored ex-
perimentally.

In this letter we discuss quantum-mechanical calculations of N electrons in a coupled QD
structure in the strong-field regime, where localization is ensured in the parent isolated QDs.
Monitoring the spatial correlation functions, we identify different ground states depending
on the inter-dot coupling. More interestingly, we find that some of the phases do not have
a classical counterpart [13], and are ascribed to a two-three-two–dimensional (2D-3D-2D)
transition of the electronic system. Such phases were not identified in previous studies of the
coupled layer system due to the neglect of tunneling and/or finite width of the layers [14–17],
i.e., of the 3D nature of the system, which turns out to be essential for their formation. From
the analysis of the dynamical form factor, we associate to each phase peculiar collective charge
excitations. By explicit calculation of the optical spectra, we predict that Raman selection
rules and peak positions may clearly discriminate between the different phases.
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We consider two vertically coupled QDs, defined by the potential V (r) = m∗ω2
0�2/2 +

V (z) given by the sum of an in-plane term (� ≡ (x, y), m∗ effective mass, ω0 characteristic
frequency), and a profile V (z) along the growth direction z, which is a symmetrical square
double quantum well (DQW). Each well, of width Lw and potential height V0, contains one of
the two QDs. They are separated by a barrier of width d. The single-particle Hamiltonian in
the symmetric gauge is H0(r, sz) = (−ih̄∇+ |e|A/c)2/2m∗+V (r)+g∗µBBsz, with B parallel
to the z-axis (A = B × �/2, µB Bohr magneton, g∗ effective giromagnetic factor, sz = ±1/2
spin). Since we are interested in the strong localization regime of small filling factors ν,
we expect that spin texture does not alter the essential physics. Therefore, we assume that
electrons are spin polarized [18] and neglect Landau level mixing [6,7,14]. The eigenfunctions
of H0 are ψm,g(r) = ϕm(�)χi(z), where ϕm(�) (m = 0, 1, 2, . . .) are the Fock-Darwin orbitals
of the first Landau band, and χ1 and χ2 the symmetrical (S, bonding) and antisymmetrical
(AS, antibonding) states of the DQW, respectively. We neglect higher subbands since in real
QDs the confinement in the z-direction is stricter than in the xy plane. The index g in ψm,g(r)
stands for the parity under spatial inversion r → −r: even when m + i is odd, odd otherwise.
The many-body Hamiltonian H [α ≡ (m, g)] is

H =
∑
α

εαc†αcα +
1
2

∑
αβγδ

〈
αβ

∣∣∣ e2

κr |r1 − r2|
∣∣∣γδ

〉
c†αc†βcγcδ.

cα destroys an electron occupying the orbital α. Here the single-particle energy εmg = h̄Ω(m+
1) − h̄ωc m/2 + εi − |g∗|µBB/2 is the sum of the in-plane contribution and the energy of the
i-th DQW state εi, Ω = (ω2

0 + ω2
c/4)1/2, ωc = |e|B/cm∗ is the cyclotron frequency, κr is the

dielectric constant [6]. H is represented in a basis of Slater determinants spanned by filling
with N electrons the single-particle states ψm,g; it is diagonalized on each Hilbert space sector
labeled by the total orbital angular momentum M and parity.

Since the basis must be truncated, as in any Configuration Interaction approach, the Fock
space was built by filling up to 32 orbitals, chosen within the set {ψm,g}m,g to minimize the
energy. In order to improve the accuracy of results, the choice of single-particle orbitals ψm,g

depended on the M -sector: by trial and error, we found two optimized sets of orbitals: for
M ≥ 70, we included S levels with m = 0, . . . , 24 and AS levels with m = 0, . . . , 6, while for
M ≤ 69 we included S levels with m = 3, . . . , 17 and AS levels with m = 0, . . . , 16. Subspaces
obtained in this way (with maximum size ≈ 2 · 104) were diagonalized via Lanczos method.
The two-body Coulomb matrix elements of H were computed numerically.

We consider B fields such that single-QD correlation functions show strong localization [19].
We present results for N = 6. The system with N < 6 exhibits the same physics. We can
identify three regimes which, in general, correspond to different electron arrangements: I) At
small d, tunneling dominates and the system behaves as a unique coherent system. II) As d is
increased, all energy scales become comparable. III) When eventually tunneling is suppressed,
only the ratio between intra- and inter-dot interaction is the relevant parameter for the now
well-separated QDs.

Figure 1 shows the calculated ground-state energy vs. d. At small distances the curve
increases with d (phase I), because the kinetic energy exponentially grows due to the progres-
sive localization of the wave function into the dots: electrons occupy only S orbitals, whose
energies increase. Close to d = 5 nm (phase II), inter-dot tunneling is suppressed, so that S
and AS orbitals are almost degenerate: the dominant energy contribution in this regime is
the inter-dot Coulomb interaction ∝ 1/d (phase III). As d varies, ground- and first-excited
states, labelled by different M ’s and parities, cross each other at several critical values (thin
vertical lines). The monotonous decrement of M [14] proceeds by steps of 5 and then 3 units,
in regions I and III, respectively; as discussed later, these are “magic numbers” [7], reflected in
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Fig. 1 – Ground-state energy (left axis) and in-plane average radius 〈�〉 (right axis) vs. d for N = 6
at B = 25 T. For large d-values M = 36 (not shown), twice than in a single QD with N = 3. Insets
show the electron arrangements in the different phases.

the spectrum of collective excitations. Correspondingly, the in-plane average radius 〈�〉 (right
axis in fig. 1) has a stair-like behavior and it is almost constant at a given M . M measures
the in-plane spatial extension of the charge density: the higher M the outer the orbitals oc-
cupied [20]. We define a total filling factor ν, in analogy with double layers in the fractional
quantum Hall effect (FQHE), as ν = N(N − 1)/2M [20]. Here ν ranges from 1/5 at d = 0 to
5/12 when the two dots are isolated (then ν/2 = 5/24 refers to a single dot with N = 3).

The flat steps of 〈�〉 in fig. 1 imply that these states are incompressible, in the same sense
as Laughlin’s states of the FQHE [21]. Indeed, varying d acts like an external pressure applied
in the z-direction, forcing the wave function to change: however, due to a cusp-like structure
of the energy spectrum [20], this happens only in a discontinuous way. In the tunneling-
dominated regime, up to d = 4.5 nm (phase I), increasing d means enlarging the volume
of basically a unique QD, thus forcing a rearrangement of the incompressible charge density
at the M -transition 75 → 70. In the “compressible” region II the penetration of the wave
function into the inter-dot barrier goes to zero: the effective volume of the charge density is
thus reduced, which explains the slight and continuous increase of 〈�〉 with d, as shown in
fig. 1. For d > 5.3 nm (phase III), the dots are well separated, and ν increases from 1/4 to
5/12 when d → ∞, which is well known from double-layer physics [5,22], due to a decrease of
inter-dot correlation (stabilizing the Wigner molecule).

To analyze the internal structure of the molecule, we compute the pair correlation function
P (�, z;�0, z0) =

∑
i�=j 〈δ(� − �i)δ(z − zi)δ(�0 − �j)δ(z0 − zj)〉 /N(N − 1) (the average is on

the ground state). Figure 2(a) shows a contour plot of P (�, z;�0, z0) at various values of d,
one per column. An electron is fixed (black bullet) at the position (�0, z0) in one dot, at the
maximum of the charge density: the contour plots of the top (bottom) row, with z = z0 =
dot 1 (z = dot 2, z0 = dot 1) fixed, represent the conditional probability of measuring an
electron in the xy plane of dot 1 (2), given a first electron is fixed in dot 1. We find that
the three phases we discussed above clearly show characteristic structural configurations (see
also insets in fig. 1): I) At small d (left column), the whole system is coherent. The electrons,
delocalized over the dots, arrange at the vertices and the center of a regular pentagon. II) At a
critical value of d = 4.6 nm (center) an abrupt transition takes place. In the new arrangement
the electrons are at the vertices of a regular hexagon. Contrary to phase I, the peaks in the
upper and lower dots have different heights. III) When d is further increased, the structure
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Fig. 2 – (a) Contour plot of the pair correlation function P (�, z; �0, z0) at various d-values. An
electron is fixed at (�0, z0) (black bullet) corresponding to a maximum of charge density. (b) Radial
pair correlation function g(�; z, z0) vs. �. g has been renormalized in such a way that

∫
d� g(�; z, z0) =

1. Lengths are in units of � = 7.20 nm (� = (h̄/m∗Ω)1/2 characteristic in-plane radius). Insets
schematically show the spatial arrangement of electrons projected on the xy plane.

continuously evolves into two isolated dots (right), coupled only via Coulomb interaction.
Three electrons in each dot sit at the vertices of two equilateral triangles rotated by 60 degrees.

Next, we compare our system with its classical counterpart [13]. To this aim, we calculated
the (circularly symmetric) radial pair correlation function g(�; z, z0) =

∫
d�0 P (�0+�, z;�0, z0)

vs. �, which gives the probability of finding an electron at a distance � from another one fixed
on the same or opposite dot. For a classical system at zero temperature, g consists of a set
of δ-function peaks. Figure 2(b) shows the calculated g(�; z, z0) for the same three configura-
tions of fig. 2(a), together with the histograms representing the equilibrium configuration of
the corresponding classical system [13,23]. When we fit g to a set of Gaussians, also shown in
fig. 2(b), we see that the agreement between “classical” and “quantum” cases is remarkable in
phase III and, to a minor extent, in phase I, both from the point of view of absolute positions
and relative intensities of the peaks. In contrast, in phase II the peaks of the quantum system
resemble the classical ones just in position, while the intensities are definitely different; cal-
culations show, moreover, that the relative intensities are strongly d-dependent. Classically,
only phases I and III are ground-state configurations [13], while the hexagonal structure II is
a metastable state [10]. Quantum fluctuations thus force a novel phase to appear.
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Fig. 3 – (a) Dynamical form factor S(L, ω) in the dω-plane, for different angular momentum compo-
nents L, indicated in parentheses. The radius of each point is proportional to its intensity. (b) Anal-
ogous plot for the Raman scattering cross-section, at an angle θ = 0◦ between the xy plane and the
transferred momentum q (q = 2 · 106 cm−1). (c) Same as (b), with θ = 45◦.

We interpret the sequence I → II → III as a 2D → 3D → 2D transition. In phase
III the motion is quasi-2D, with electrons occupying degenerate S and AS states to form a
staggered configuration: the equilibrium structure corresponds to the classical one, with inter-
dot tunneling absent. In phase II, instead, the motion acquires an effective z-component: as d
is decreased, electrons keep their electrostatic repulsion energy low at the expense of occupying
AS states separated from S orbitals by an increasing energy gap. There is no classical analogue
to this phase. When the gap becomes too large, the electrons abruptly arrange into I, all frozen
in S orbitals. The motion now is that of a coherent quasi-2D QD, comparable to a classical
single QD. To sum up, only in phase II electrons move in a truly 3D system: as shown in
fig. 2(a), the angular modulation of P is much weaker than in I and III, suggesting that the
crystallization regime has not been reached yet [2, 3].

There is another, more subtle, discrepancy between quantum and classical cases, due
to the interplay of tunneling and particle indistinguishability. In phase I classical particles
belong either to one dot or to the other, three each for N = 6, and they can arrange in very
asymmetric configurations in each dot, as in fig. 1 of ref. [13], provided that overall they form
the centered pentagon which is favored by Coulomb interaction, the only energy scale in this
case. In the quantum case, on the contrary, particles are equally delocalized on both dots.
It simply makes no sense in this phase to assign electrons to a specific dot, since at small d
they can easily penetrate the inter-dot barrier. Therefore, tunneling changes the physics of
the artificial molecule and actually drives phase I. Indeed, if we suppress tunneling (e.g., via
a sufficiently high barrier), phase III is the only one present at any value of d, while phase I
never shows up, contrary to the classical prediction [13].
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We analyze the spectrum of neutral collective elementary excitations computing the dy-
namical form factor S(L, ω) =

∑
n |〈n|ρ†L|0〉|2 δ(ω − ωn + ω0), with |n〉 (|0〉) the many-body n-

th excited (ground) state with energy ωn (ω0), ω the excitation energy, ρ†L =∑
m

∑
g,g′ c†L+m,gcm,g′ L-th the angular component of the density fluctuation. S(L, ω) assigns

a weight to a charge density wave of angular momentum L and energy ω in the excitation
spectrum. Figure 3(a) shows S(L, ω) at low energies in the d-ω space; the intensity is pro-
portional to the radius of circles. Only few branches are dominant in each phase, with a
characteristic value of |L|: 5 in I, 6 or 3 in II and III, respectively. The occurrence of very few
excitations with large values of S(L, ω) [24] is remarkable: since the ground state is formed
by a linear combination of thousands of Slater determinants with non-negligible weight, high
values of the form factor are due to a constructive interference effect. Indeed, the geome-
try of the Wigner molecule selects the allowed —magic— values of M and parity, and thus
L = M2−M1 corresponding to the coupling between two magic states M1, M2. Consider, e.g.,
the wave function Ψ of phase II with electrons at the vertices of a regular hexagon. A cyclic
coordinate permutation is a π/3 rotation such that Ψ → exp [πiM/3]Ψ. In this case Ψ changes
sign [25], and therefore M = 6p + 3 (p integer) and the resulting parity is odd. Our findings
show that an excited magic state can be created by adding L quanta of angular momentum to
the ground state via the density fluctuation operator ρ†L. The allowed values of L characterize
different phases. The diamond shape of different |L|-branches in fig. 3(a) originates from level
crossing between magic states: ω → 0 at every M -transition in the ground state.

Finally, we compute the “electronic” part of Raman scattering cross-section [26]. This
is strictly related to S(L, ω), and is proportional to

∑
n |Mn0|2 δ (ω − ωn + ω0), with Mn0 =∑

α,β

〈
α|eiq·r|β〉 〈

n|c†αcβ |0
〉
, and q wave vector transferred in the inelastic photon scatter-

ing [27]. The correlated excitation spectrum of single QDs has already been experimentally
probed [28], in the regime q� ≈ 1. Thus, having fixed a suitable value of q in a backscattering
geometry, in figs. 3(b) and (c) we plot the cross-sections at different angles θ between q and
the xy plane (θ = 0◦ and 45◦, respectively). The spectra resemble the form factor S(L, ω),
but intensities are differently modulated. For in-plane scattering (fig. 3(b), θ = 0◦), only the
branches with |L| = 5 characterizing phase I survive, while all other signals are suppressed.
The background small dots appearing in fig. 3(b-c) are smaller than 9 % of the maximum
value. As θ increases (fig. 3(c), θ = 45◦), the branches of phase I continuously lose intensity as
those of II and III acquire weight, until the latter show a very strong signal at θ = 45◦, while
the former are suppressed. In I, indeed, all electrons occupy S orbitals, hence the z-component∫

dz χ∗
i (z) eiqzzχj(z) of matrix element

〈
α|eiq·r|β〉

diminishes as long as θ (and qz) increases;
the opposite holds true for II and III, since S and AS orbitals can mix. This means that momen-
tum can be transferred in the z-direction only in II and III, contrary to I, where the system is a
unique quasi-2D dot. Signals with |L| = 6 are almost invisible, but still phase II can be resolved
from III in virtue of the characteristic energy and slope of visible branches. This comes from
the way S and AS orbitals are differently filled in II and III, respectively, and hence from the
different contribution of tunneling to the total energy. When θ is further increased, the selec-
tion rule L = 0 becomes effective, and eventually at θ = 90◦ low-energy signals are suppressed.

To summarize, we have predicted a 2D-3D-2D transition of interacting electrons in a
double QD, accompanied by the appearance of a novel liquid-like quantum phase, in addition
to classical configurations. The θ-dependent modulation of the Raman spectrum should allow
to experimentally discriminate between different phases.
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[22] Świerkowski L., Neilson D. and Szymański J., Phys. Rev. Lett., 67 (1991) 240; Goldoni

G. and Peeters F. M., Europhys. Lett., 37 (1997) 293.
[23] For the classical histograms, we used data of a single QD (Date G., Murthy M. V. N.

and Vathsan R., J. Phys. Condens. Matter, 10 (1998) 5876): II differs from III in the way
electrons are placed on a particular dot. We normalized δ-functions so that the two highest
classical and quantum peaks in III have the same height.

[24] The value of dots not labeled by (L) in fig. 3(a) is smaller than 16% of the maximum value.
[25] Ruan W. Y., Liu Y. Y., Bao C. G. and Zhang Z. Q., Phys. Rev. B, 51 (1995) 7942.
[26] Hawrylak P., Solid State Commun., 93 (1995) 915.
[27] Blum F. A., Phys. Rev. B, 1 (1970) 1125.
[28] Lockwood D. J., Hawrylak P., Wang P. D., Sotomayor Torres C. M., Pinczuk A. and

Dennis B. S., Phys. Rev. Lett., 77 (1996) 354; Schüller C., Keller K., Biese G., Ulrichs

E., Rolf L., Steinebach C., Heitmann D. and Eberl K., Phys. Rev. Lett., 80 (1998) 2673.


