753 research outputs found
Observation of Magnetic Flux Generated Spontaneously During a Rapid Quench of Superconducting Films
We report observations of spontaneous formation of magnetic flux lines during
a rapid quench of YBaCuO films through T. This
effect is predicted according to the Kibble-Zurek mechanism of creation of
topological defects of the order parameter during a symmetry-breaking phase
transition. Our previous experiment, at a quench rate of 20K/sec, gave null
results. In the present experiment, the quench rate was increased to
\TEXTsymbol{>} 10 K/sec. Within experimental resolution, the dependence
of the measured flux on the cooling rate is consistent with the prediction
Modelling radiation-induced cell cycle delays
Ionizing radiation is known to delay the cell cycle progression. In
particular after particle exposure significant delays have been observed and it
has been shown that the extent of delay affects the expression of damage such
as chromosome aberrations. Thus, to predict how cells respond to ionizing
radiation and to derive reliable estimates of radiation risks, information
about radiation-induced cell cycle perturbations is required. In the present
study we describe and apply a method for retrieval of information about the
time-course of all cell cycle phases from experimental data on the mitotic
index only. We study the progression of mammalian cells through the cell cycle
after exposure. The analysis reveals a prolonged block of damaged cells in the
G2 phase. Furthermore, by performing an error analysis on simulated data
valuable information for the design of experimental studies has been obtained.
The analysis showed that the number of cells analyzed in an experimental sample
should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and
Environmental Biophysic
Effect of handwashing poster and voice message on handwashing behaviors
There was a difference in the handwashing behavior according to the intervention strategy for each gender. it is necessary to use an effective hand washing promotion strategy for each subject rather than a uniform method
AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma
Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways
An expert consensus for the management of chronic hepatitis B in Asian Americans.
BACKGROUND: Hepatitis B virus (HBV) infection is common with major clinical consequences. In Asian Americans, the HBsAg carrier rate ranges from 2% to 16% which approximates the rates from their countries of origin. Similarly, HBV is the most important cause of cirrhosis, hepatocellular carcinoma (HCC) and liver related deaths in HBsAg positive Asians worldwide.
AIM: To generate recommendations for the management of Asian Americans infected with HBV.
METHODS: These guidelines are based on relevant data derived from medical reports on HBV from Asian countries as well as from studies in the HBsAg positive Asian Americans. The guidelines herein differ from other recommendations in the treatment of both HBeAg positive and negative chronic hepatitis B (CHB), in the approach to HCC surveillance, and in the management of HBV in pregnant women.
RESULTS: Asian American patients, HBeAg positive or negative, with HBV DNA levels \u3e2000 IU/mL (\u3e10
CONCLUSIONS: Application of the recommendations made based on a review of the relevant literature and the opinion of a panel of Asian American physicians with expertise in HBV treatment will inform physicians and improve patient outcomes
Anti-Neuroinflammatory Effects of the Calcium Channel Blocker Nicardipine on Microglial Cells: Implications for Neuroprotection
Background/Objective Nicardipine is a calcium channel blocker that has been widely used to control blood pressure in severe hypertension following events such as ischemic stroke, traumatic brain injury, and intracerebral hemorrhage. However, accumulating evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play important roles in neurodegeneration, and the effect of nicardipine on microglial activation remains unresolved. Methodology/Principal Findings In the present study, using murine BV-2 microglia, we demonstrated that nicardipine significantly inhibits microglia-related neuroinflammatory responses. Treatment with nicardipine inhibited microglial cell migration. Nicardipine also significantly inhibited LPS plus IFN-γ-induced release of nitric oxide (NO), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, nicardipine also inhibited microglial activation by peptidoglycan, the major component of the Gram-positive bacterium cell wall. Notably, nicardipine also showed significant anti-neuroinflammatory effects on microglial activation in mice in vivo. Conclusion/Significance The present study is the first to report a novel inhibitory role of nicardipine on neuroinflammation and provides a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases
JWST Optical Telescope Element Center of Curvature Test
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) completed element level integration and test programs and were integrated to the next level of assembly called OTE/ISIM (OTIS) at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland in 2016. Before shipping the OTIS to Johnson Space Center (JSC) for optical test at cryogenic temperature a series of vibration and acoustic tests were performed. To help ensure that the OTIS was ready to be shipped to JSC an optical center of curvature (CoC) test was performed to measure changes in the mirror's optical performance to verify that the telescope's primary mirror was not adversely impacted by the environmental testing and help us in understanding potential anomalies identified during the JSC tests. The primary is a 6.5 meter diameter mirror consisting of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup and both static and dynamic test results
Biomechanical Strategies for Obstacle Crossing in Patients with Anterior Cruciate Ligament Deficiency
The current study aimed to investigate the biomechanical control strategies in patients with anterior cruciate ligament deficiency (ACLD) when crossing obstacles of different heights. Eighteen patients with unilateral ACLD and sixteen age-matched healthy controls were recruited. They crossed obstacles of heights of 10%, 20% and 30% of their leg lengths at a self-selected pace while the kinematic and kinetic data were measured and analyzed using inverse dynamics analysis. Patients with ACLD were found to avoid using the quadriceps on both affected and unaffected sides during stance phase. Training programs on both quadriceps are needed for more efficient rehabilitation of the patients with unilateral ACLD
VALIDITY OF A MAKER-BASED LOCATOR FOR MEASURING IN VIVO THREEDIMENSIONAL SCAPULAR STATIC POSES USING STEREOPHOTOGRAMMETRY
The study aimed to (1) develop a marker-based scapular locator for measuring scapular poses and (2) to design an in vivo experimental procedure for this static marker-based measurement method to decrease measurement errors, and (3) to validate this scapular locator and the experimental procedure. Six young male adults were implanted into the spine of the scapula with two bone-pins that were attached with a cluster of four retroreflective markers (bone markers). The scapular poses were measured simultaneously using the developed scapular locator and the bone markers. The results showed that very high validity for scapular rotations and for the acromial angle (AA), the root of spine (RS) and the inferior angle (IA) of the scapular translation were achieved. Two main reasons contributed to the results: (1) the adjustable scapular locator and (2) careful palpation of the bony landmarks over the scapula
- …
