639 research outputs found
No association of TNFRSF1B variants with type 2 diabetes in Indians of Indo-European origin
<p>Abstract</p> <p>Background</p> <p>There has been no systematic evaluation of the association between genetic variants of type 2 receptor for TNFα (TNFR2) and type 2 diabetes, despite strong biological evidence for the role of this receptor in the pathogenesis of this complex disorder. In view of this, we performed a comprehensive association analysis of <it>TNFRSF1B </it>variants with type 2 diabetes in 4,200 Indo-European subjects from North India.</p> <p>Methods</p> <p>The initial phase evaluated association of seven SNPs viz. rs652625, rs496888, rs6697733, rs945439, rs235249, rs17883432 and rs17884213 with type 2 diabetes in 2,115 participants (1,073 type 2 diabetes patients and 1,042 control subjects). Further, we conducted replication analysis of three associated SNPs in 2,085 subjects (1,047 type 2 diabetes patients and 1,038 control subjects).</p> <p>Results</p> <p>We observed nominal association of rs945439, rs235249 and rs17884213 with type 2 diabetes (<it>P </it>< 0.05) in the initial phase. Haplotype CC of rs945439 and rs235249 conferred increased susceptibility for type 2 diabetes [OR = 1.19 (95%CI 1.03-1.37), <it>P </it>= 0.019/<it>P</it><sub>perm </sub>= 0.076] whereas, TG haplotype of rs235249 and rs17884213 provided protection against type 2 diabetes [OR = 0.83 (95%CI 0.72-0.95, <it>P </it>= 7.2 × 10<sup>-3</sup>/<it>P</it><sub>perm </sub>= 0.019]. We also observed suggestive association of rs496888 with plasma hsCRP levels [<it>P </it>= 0.042]. However, the association of rs945439, rs235249 and rs17884213 with type 2 diabetes was not replicated in the second study population. Meta-analysis of the two studies also failed to detect any association with type 2 diabetes.</p> <p>Conclusions</p> <p>Our two-stage association analysis suggests that <it>TNFRSF1B </it>variants are not the determinants of genetic risk of type 2 diabetes in North Indians.</p
Large vessel vasculitis
Takayasu arteritis is a chronic granulomatous disease of the aorta and its major branches that usually affects women during the second and third decades of life, but it has been reported in young children. This review details the clinical, pathological and radiological features, differential diagnoses and management of the condition, focusing chiefly on the disease in children. The recent definition of Takayasu arteritis is discussed. The condition should be considered in patients with unexplained arterial hypertension or unexplained inflammatory syndromes without signs of localization. Since the disease may be life-threatening and progressive, early recognition is necessary to initiate appropriate therapy. Patients with persistent ischaemic symptoms including hypertension might benefit from revascularization procedures
Inhibition of IGF-1 Signalling Enhances the Apoptotic Effect of AS602868, an IKK2 Inhibitor, in Multiple Myeloma Cell Lines
Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-κB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-κB inhibitors
The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor
Sodium/proton exchangers (NHX) are key players in the plant response to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in the tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in sodium ions being removed from the cytosol into the vacuole or extracellular space. The expression of most plant NHX genes is modulated by exposure of the organisms to salt stress or water stress. We explored the regulation of the vacuolar NHX1 gene from the salt-tolerant sugar beet plant (BvNHX1) using Arabidopsis plants transformed with an array of constructs of BvHNX1::GUS, and the expression patterns were characterized using histological and quantitative assays. The 5′ UTR of BvNHX1, including its intron, does not modulate the activity of the promoter. Serial deletions show that a 337 bp promoter fragment sufficed for driving activity that indistinguishable from that of the full-length (2,464 bp) promoter. Mutating four putative cis-acting elements within the 337 bp promoter fragment revealed that MYB transcription factor(s) are involved in the activation of the expression of BvNHX1 upon exposure to salt and water stresses. Gel mobility shift assay confirmed that the WT but not the mutated MYB binding site is bound by nuclear protein extracted from salt-stressed Betavulgaris leaves
N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death.
APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their wild-type counterparts. Defective apoptotic signaling by N-glyc-deficient TRAIL receptors was associated with lower TRAIL receptor aggregation and reduced DISC formation, but not with reduced TRAIL-binding affinity. Our results also indicate that TRAIL receptor N-glyc impacts immune evasion strategies. The cytomegalovirus (CMV) UL141 protein, which restricts cell-surface expression of human TRAIL death receptors, binds with significant higher affinity TRAIL-R1 lacking N-glyc, suggesting that this sugar modification may have evolved as a counterstrategy to prevent receptor inhibition by UL141. Altogether our findings demonstrate that N-glyc of TRAIL-R1 promotes TRAIL signaling and restricts virus-mediated inhibition
Имитация распределенной обработки информации в вычислительных системах и локальных вычислительных сетях
Предложено использовать для анализа вариантов организации распределенной обработки информации в вычислительных системах и локальных вычислительных сетях вероятностный граф реализации вычислительного процесса с явными связями типа вероятностных сетевых графиков.Запропоновано використовувати для аналізу варіантів організації розподіленої обробки інформації в обчислювальних системах і в локальних обчислювальних мережах імовірнісний граф реалізації обчислювального процесу з явними зв’язками типу імовірнісних сіткових графіків.It іs оffered to use for analyzing variants of organization of distributed information processing in computing systems and local computing networks a probabilistic graph for realizing a computing process with evident relationships of the type probabilistic network diagrams
Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association
Background: Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis
Chicken Pleiotrophin: Regulation of Tissue Specific Expression by Estrogen in the Oviduct and Distinct Expression Pattern in the Ovarian Carcinomas
Pleiotrophin (PTN) is a developmentally-regulated growth factor which is widely distributed in various tissues and also detected in many kinds of carcinomas. However, little is known about the PTN gene in chickens. In the present study, we found chicken PTN to be highly conserved with respect to mammalian PTN genes (91–92.6%) and its mRNA was most abundant in brain, heart and oviduct. This study focused on the PTN gene in the oviduct where it was detected in the glandular (GE) and luminal (LE) epithelial cells. Treatment of young chicks with diethylstilbesterol induced PTN mRNA and protein in GE and LE, but not in other cell types of the oviduct. Further, several microRNAs, specifically miR-499 and miR-1709 were discovered to influence PTN expression via its 3′-UTR which suggests that post-transcriptional regulation influences PTN expression in chickens. We also compared expression patterns and CpG methylation status of the PTN gene in normal and cancerous ovaries from chickens. Our results indicated that PTN is most abundant in the GE of adenocarcinoma of cancerous, but not normal ovaries of hens. Bisulfite sequencing revealed that 30- and 40% of −1311 and −1339 CpG sites are demethylated in ovarian cancer cells, respectively. Collectively, these results indicate that chicken PTN is a novel estrogen-induced gene expressed mainly in the oviductal epithelia implicating PTN regulation of oviduct development and egg formation, and also suggest that PTN is a biomarker for epithelial ovarian carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease
Functional Genetic Diversity among Mycobacterium tuberculosis Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival
Tuberculosis exerts a tremendous burden on global health, with ∼9 million new infections and ∼2 million deaths annually. The Mycobacterium tuberculosis complex (MTC) was initially regarded as a highly homogeneous population; however, recent data suggest the causative agents of tuberculosis are more genetically and functionally diverse than appreciated previously. The impact of this natural variation on the virulence and clinical manifestations of the pathogen remains largely unknown. This report examines the effect of genetic diversity among MTC clinical isolates on global gene expression and survival within macrophages. We discovered lineage-specific transcription patterns in vitro and distinct intracellular growth profiles associated with specific responses to host-derived environmental cues. Strain comparisons also facilitated delineation of a core intracellular transcriptome, including genes with highly conserved regulation across the global panel of clinical isolates. This study affords new insights into the genetic information that M. tuberculosis has conserved under selective pressure during its long-term interactions with its human host
Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs
Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment
- …