1,367 research outputs found
Ad majorem scientiae fructum. Le Corpus inscriptionum semiticarum dans les correspondances conservées à l'Institut de France
The project of Corpus inscriptionum semiticarum and its first years as seen through the correspondance of Renan, Clermont-Ganneau, Delattre, Euting etc. preserved in Institut de Franc
Tracking the origin and divergence of cholinesterases and neuroligins: the evolution of synaptic proteins
14. International Symposium on Cholinergic Mechanisms (ISCM), Hangzhou, 2013/05/05-9A cholinesterase activity can be found in all kingdoms of living organism, yet cholinesterases involved in cholinergic transmission appeared only recently in the animal phylum. Among various proteins homologous to cholinesterases, one finds neuroligins. These proteins, with an altered catalytic triad and no known hydrolytic activity, display well-identified cell adhesion properties. The availability of complete genomes of a few metazoans provides opportunities to evaluate when these two protein families emerged during evolution. In bilaterian animals, acetylcholinesterase co-localizes with proteins of cholinergic synapses while neuroligins co-localize and may interact with proteins of excitatory glutamatergic or inhibitory GABAergic/glycinergic synapses. To compare evolution of the cholinesterases and neuroligins with other proteins involved in the architecture and functioning of synapses, we devised a method to search for orthologs of these partners in genomes of model organisms representing distinct stages of metazoan evolution. Our data point to a progressive recruitment of synaptic components during evolution. This finding may shed light on the common or divergent developmental regulation events involved into the setting and maintenance of the cholinergic versus glutamatergic and GABAergic/glycinergic synapses
ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions
The ESTHER database, which is freely available via a web server (http://bioweb.ensam.inra.fr/esther) and is widely used, is dedicated to proteins with an a/b-hydrolase fold, and it currently contains >30 000 manually curated proteins. Herein, we report those substantial changes towards improvement that we have made to improve ESTHER during the past 8 years since our 2004 update. In particular, we generated 87 new families and increased the coverage of the UniProt Knowledgebase (UniProtKB). We also renewed the ESTHER website and added new visualization tools, such as the Overall Table and the Family Tree. We also address two topics of particular interest to the ESTHER users. First, we explain how the different enzyme classifications (bacterial lipases, peptidases,carboxylesterases) used by different communities of users are combined in ESTHER. Second, we discuss how variations of core architecture or in predicted active site residues result in a more precise clustering of families, and whether this strategy provides trustable hints to identify enzymelike proteins with no catalytic activity
Use of superheated liquids for the extraction of non-volatile compounds from wood: HPLC studies
A study of the extraction of oak wood compounds using superheated water-ethanol mixtures ranging from 10 to 60% ethanol is reported. Identification and characterization of the extracted compounds have been made by high performance liquid chromatography. The extraction has been performed using the static mode by single or repetitive cycles. The variables affecting the extraction process have been studied and their optimum values established (extraction time: 50 min; pressure: 40 atm; extraction temperature: 180º C). The study allows to compare the non-volatile polyphenol fractions obtained in this way with those present in commercial samples with fully agreement between them. In addition, the method allows manipulation of the extract composition by changing the working pressure, temperature and water-ethanol ratio
Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases
The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases. Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association induced aggregation of monomeric PrP and modified the structural properties of PrP amyloid fibrils. Following its recruitment into PrP fibrils, AChE loses its enzymatic activity and enhances PrP-mediated cytotoxicity. Using several truncated PrP variants and specific tight-binding AChE inhibitors (AChEis), we then demonstrate that the PrP-AChE interaction requires two mutually exclusive sub-sites in PrP N-terminal domain and an aromatic-rich region at the entrance of AChE active center gorge. We show that AChEis that target this site impair PrP-AChE complex formation and also limit the accumulation of pathological prion protein (PrPSc) in prion-infected cell cultures. Furthermore, reduction of AChE levels in prion-infected heterozygous AChE knock-out mice leads to slightly but significantly prolonged incubation time. Finally, we found that AChE levels were altered in prion-infected cells and tissues, suggesting that AChE might be directly associated with abnormal PrP. Our results indicate that AChE deserves consideration as a new actor in expanding pathologically relevant PrP morphotypes and as a therapeutic target
An important step forward for the future development of an easy and fast procedure for identifying the most dangerous wine spoilage yeast, Dekkera bruxellensis, in wine environment
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridisation (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells autofluorescence, fluorophore inadequate selection and probes low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used and the matrix and cells fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment a red-emitting fluorophore should be used. Good probe performance and specificity was achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours.
Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.This work was co-financed by Foundation for Science and Technology (FCT) and the European Union through the European Regional Development Fund ALENTEJO 2020 through the projects PTDC/BBB-IMG/0046/2014 and ALT20-03-0145-FEDER-000015, respectively. Marina González-Pérez acknowledges FCT for the economic support through the post-doctoral grant SFRH/BPD/100754/2014
Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio
A simple cultural method for the presumptive detection of the yeasts Brettanomyces/Dekkera in wines
The development of a simple and reliable procedure, compatible with routine use in wineries, for the presumptive detection of Brettanomyces/Dekkera from wine and wine-environment samples. Methods and Results: The method of detection of these yeasts employs a selective enrichment medium. The medium contains glucose (10 g l⁻¹1) as carbon and energy source, cycloheximide (20 mg l⁻¹1) to prevent growth of Saccharomyces, chloramphenicol (200 mg l⁻¹1) to prevent growth of bacteria and p-coumaric acid (20 mg l⁻¹1) as the precursor for the production of 4-ethyl-phenol. After the inoculation with wine, the medium is monitored by visual inspection of turbidity and by periodic olfactive analysis. Contaminated wines will develop visible turbidity in the medium and will produce the 4-ethyl-phenol off-odour, which can be easily detected by smelling.
Conclusions: A selective enrichment liquid medium was developed to differentially promote the growth and activity of Brettanomyces/Dekkera. The method is simple to execute, employing a simple-to-prepare medium and a periodic olfactive detection.
Significance and Impact of the Study: The characteristics of the procedure make it particularly applicable in a wine-making environment thus presenting important advantages to the wine industry
The impact of maturation on concentrations of key odour active compounds which determine the aroma of tequila
Samples of non-mature and añejo (matured) tequila of the same brand/provenance were analysed using GC–MS and gas chromatography olfactometry (GC-O)/aroma extract dilution analysis (AEDA) to provide quantitative data on the most odour active compounds that contribute to the aroma of these spirits. Extracts of non-mature tequila were characterized by 26 odour-active regions, which included ethyl hexanoate, ethyl octanoate, 2-phenylethyl acetate, β-damascenone, isoamyl alcohol and octanoic acid as the most odour-active compounds (flavour dilution, FD, factor ≥ 6561). In contrast, extracts of the mature spirit showed 36 odour-active zones, where the compounds with the highest FD factors (6561) were ethyl hexanoate, ethyl octanoate, 2-phenylethyl acetate, isoamyl alcohol, phenethyl alcohol, guaiacol, 4-ethyl guaiacol, vanillin, cis/trans whisky lactones, β-damascenone and octanoic acid. The aromagram of mature tequila was thus differentiated from that of the non-mature spirit owing to the presence of cask-extractive compounds and the increased FD factors of certain terpenes, higher alcohols and acetals. This study provides a comprehensive and quantitative understanding of changes in key odourants of tequila as a result of the maturation process and also reveals a further characterization of the likely impact of each compound on overall spirit flavour, in terms of odour activity values
Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts
Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols
- …
