589 research outputs found

    Tracing Sub-Structure in the European American Population with PCA-Informative Markers

    Get PDF
    Genetic structure in the European American population reflects waves of migration and recent gene flow among different populations. This complex structure can introduce bias in genetic association studies. Using Principal Components Analysis (PCA), we analyze the structure of two independent European American datasets (1,521 individuals–307,315 autosomal SNPs). Individual variation lies across a continuum with some individuals showing high degrees of admixture with non-European populations, as demonstrated through joint analysis with HapMap data. The CEPH Europeans only represent a small fraction of the variation encountered in the larger European American datasets we studied. We interpret the first eigenvector of this data as correlated with ancestry, and we apply an algorithm that we have previously described to select PCA-informative markers (PCAIMs) that can reproduce this structure. Importantly, we develop a novel method that can remove redundancy from the selected SNP panels and show that we can effectively remove correlated markers, thus increasing genotyping savings. Only 150–200 PCAIMs suffice to accurately predict fine structure in European American datasets, as identified by PCA. Simulating association studies, we couple our method with a PCA-based stratification correction tool and demonstrate that a small number of PCAIMs can efficiently remove false correlations with almost no loss in power. The structure informative SNPs that we propose are an important resource for genetic association studies of European Americans. Furthermore, our redundancy removal algorithm can be applied on sets of ancestry informative markers selected with any method in order to select the most uncorrelated SNPs, and significantly decreases genotyping costs

    Genome-wide Association of Lipid-lowering Response to Statins in Combined Study Populations

    Get PDF
    Background: Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined analysis of genome-wide association (GWA) results from three trials of statin efficacy. Methods and Principal Findings: Bayesian and standard frequentist association analyses were performed on untreated and statin-mediated changes in LDL-cholesterol, total cholesterol, HDL-cholesterol, and triglyceride on a total of 3932 subjects using data from three studies: Cholesterol and Pharmacogenetics (40 mg/day simvastatin, 6 weeks), Pravastatin/Inflammation CRP Evaluation (40 mg/day pravastatin, 24 weeks), and Treating to New Targets (10 mg/day atorvastatin, 8 weeks). Genotype imputation was used to maximize genomic coverage and to combine information across studies. Phenotypes were normalized within each study to account for systematic differences among studies, and fixed-effects combined analysis of the combined sample were performed to detect consistent effects across studies. Two SNP associations were assessed as having posterior probability greater than 50%, indicating that they were more likely than not to be genuinely associated with statin-mediated lipid response. SNP rs8014194, located within the CLMN gene on chromosome 14, was strongly associated with statin-mediated change in total cholesterol with an 84% probability by Bayesian analysis, and a p-value exceeding conventional levels of genome-wide significance by frequentist analysis (P = 1.8×10−8^{−8}). This SNP was less significantly associated with change in LDL-cholesterol (posterior probability = 0.16, P = 4.0×10−6^{−6}). Bayesian analysis also assigned a 51% probability that rs4420638, located in APOC1 and near APOE, was associated with change in LDL-cholesterol. Conclusions and Significance: Using combined GWA analysis from three clinical trials involving nearly 4,000 individuals treated with simvastatin, pravastatin, or atorvastatin, we have identified SNPs that may be associated with variation in the magnitude of statin-mediated reduction in total and LDL-cholesterol, including one in the CLMN gene for which statistical evidence for association exceeds conventional levels of genome-wide significance.Trial Registration PRINCE and TNT are not registered. CAP is registered at Clinicaltrials.gov NCT0045182

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    On the Use of Variance per Genotype as a Tool to Identify Quantitative Trait Interaction Effects: A Report from the Women's Genome Health Study

    Get PDF
    Testing for genetic effects on mean values of a quantitative trait has been a very successful strategy. However, most studies to date have not explored genetic effects on the variance of quantitative traits as a relevant consequence of genetic variation. In this report, we demonstrate that, under plausible scenarios of genetic interaction, the variance of a quantitative trait is expected to differ among the three possible genotypes of a biallelic SNP. Leveraging this observation with Levene's test of equality of variance, we propose a novel method to prioritize SNPs for subsequent gene–gene and gene–environment testing. This method has the advantageous characteristic that the interacting covariate need not be known or measured for a SNP to be prioritized. Using simulations, we show that this method has increased power over exhaustive search under certain conditions. We further investigate the utility of variance per genotype by examining data from the Women's Genome Health Study. Using this dataset, we identify new interactions between the LEPR SNP rs12753193 and body mass index in the prediction of C-reactive protein levels, between the ICAM1 SNP rs1799969 and smoking in the prediction of soluble ICAM-1 levels, and between the PNPLA3 SNP rs738409 and body mass index in the prediction of soluble ICAM-1 levels. These results demonstrate the utility of our approach and provide novel genetic insight into the relationship among obesity, smoking, and inflammation

    A common missense variant of <i>LILRB<sub>5</sub></i> is associated with statin intolerance and myalgia

    Get PDF
    Aims A genetic variant in LILRB5 (leukocyte immunoglobulin-like receptor subfamily-B) (rs12975366: T > C: Asp247Gly) has been reported to be associated with lower creatine phosphokinase (CK) and lactate dehydrogenase (LDH) levels. Both biomarkers are released from injured muscle tissue, making this variant a potential candidate for susceptibility to muscle-related symptoms. We examined the association of this variant with statin intolerance ascertained from electronic medical records in the GoDARTS study. Methods and results In the GoDARTS cohort, the LILRB5 Asp247 variant was associated with statin intolerance (SI) phenotypes; one defined as having raised CK and being non-adherent to therapy [odds ratio (OR) 1.81; 95% confidence interval (CI): 1.34–2.45] and the other as being intolerant to the lowest approved dose of a statin before being switched to two or more other statins (OR 1.36; 95% CI: 1.07–1.73). Those homozygous for Asp247 had increased odds of developing both definitions of intolerance. Importantly the second definition did not rely on CK elevations. These results were replicated in adjudicated cases of statin-induced myopathy in the PREDICTION-ADR consortium (OR1.48; 95% CI: 1.05–2.10) and for the development of myalgia in the JUPITER randomized clinical trial of rosuvastatin (OR1.35, 95% CI: 1.10–1.68). A meta-analysis across the studies showed a consistent association between Asp247Gly and outcomes associated with SI (OR1.34; 95% CI: 1.16–1.54). Conclusion This study presents a novel immunogenetic factor associated with statin intolerance, an important risk factor for cardiovascular outcomes. The results suggest that true statin-induced myalgia and non-specific myalgia are distinct, with a potential role for the immune system in their development. We identify a genetic group that is more likely to be intolerant to their statins

    Large-Scale Candidate Gene Analysis of HDL Particle Features

    Get PDF
    Background: HDL cholesterol (HDL-C) is an established marker of cardiovascular risk with significant genetic determination. However, HDL particles are not homogenous, and refined HDL phenotyping may improve insight into regulation of HDL metabolism. We therefore assessed HDL particles by NMR spectroscopy and conducted a large-scale candidate gene association analysis. Methodology/Principal Findings: We measured plasma HDL-C and determined mean HDL particle size and particle number by NMR spectroscopy in 2024 individuals from 512 British Caucasian families. Genotypes were 49,094 SNPs in >2,100 cardiometabolic candidate genes/loci as represented on the HumanCVD BeadChip version 2. False discovery rates (FDR) were calculated to account for multiple testing. Analyses on classical HDL-C revealed significant associations (FDR<0.05) only for CETP (cholesteryl ester transfer protein; lead SNP rs3764261: p = 5.6*10(-15)) and SGCD (sarcoglycan delta; rs6877118: p = 8.6*10(-6)). In contrast, analysis with HDL mean particle size yielded additional associations in LIPC (hepatic lipase; rs261332: p = 6.1*10(-9)), PLTP (phospholipid transfer protein, rs4810479: p = 1.7*10(-8)) and FBLN5 (fibulin-5; rs2246416: p = 6.2*10(-6)). The associations of SGCD and Fibulin-5 with HDL particle size could not be replicated in PROCARDIS (n = 3,078) and/or the Women's Genome Health Study (n = 23,170). Conclusions: We show that refined HDL phenotyping by NMR spectroscopy can detect known genes of HDL metabolism better than analyses on HDL-C
    • …
    corecore