184 research outputs found
Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform
Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.
From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields
We review methods to measure magnetic fields within the corona using the
polarized light in magnetic-dipole (M1) lines. We are particularly interested
in both the global magnetic-field evolution over a solar cycle, and the local
storage of magnetic free energy within coronal plasmas. We address commonly
held skepticisms concerning angular ambiguities and line-of-sight confusion. We
argue that ambiguities are in principle no worse than more familiar remotely
sensed photospheric vector-fields, and that the diagnosis of M1 line data would
benefit from simultaneous observations of EUV lines. Based on calculations and
data from eclipses, we discuss the most promising lines and different
approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2
to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the
hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed
by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will
be made possible with the new generation of coronagraphs, in three distinct
ways: (i) through single point inversions (which encompasses also the analysis
of MHD wave modes), (ii) using direct comparisons of synthetic MHD or
force-free models with polarization data, and (iii) using tomographic
techniques.Comment: Accepted by Solar Physics, April 201
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
Background discrimination capabilities of a heat and ionization germanium cryogenic detector
The discrimination capabilities of a 70 g heat and ionization Ge bolometer
are studied. This first prototype has been used by the EDELWEISS Dark Matter
experiment, installed in the Laboratoire Souterrain de Modane, for direct
detection of WIMPs. Gamma and neutron calibrations demonstrate that this type
of detector is able to reject more than 99.6% of the background while retaining
95% of the signal, provided that the background events distribution is not
biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data
taken in a relatively important radioactive environment show an extra
population slightly overlapping the signal. This background is likely due to
interactions of low energy photons or electrons near the surface of the
crystal, and is somewhat reduced by applying a higher charge-collecting inverse
bias voltage (-6 V instead of -2 V) to the Ge diode. Despite this
contamination, more than 98% of the background can be rejected while retaining
50% of the signal. This yields a conservative upper limit of 0.7
event.day^{-1}.kg^{-1}.keV^{-1}_{recoil} at 90% confidence level in the 15-45
keV recoil energy interval; the present sensitivity appears to be limited by
the fast ambient neutrons. Upgrades in progress on the installation are
summarized.Comment: Submitted to Astroparticle Physics, 14 page
Event categories in the EDELWEISS WIMP search experiment
Four categories of events have been identified in the EDELWEISS-I dark matter
experiment using germanium cryogenic detectors measuring simultaneously charge
and heat signals. These categories of events are interpreted as electron and
nuclear interactions occurring in the volume of the detector, and electron and
nuclear interactions occurring close to the surface of the detectors(10-20 mu-m
of the surface). We discuss the hypothesis that low energy surface nuclear
recoils,which seem to have been unnoticed by previous WIMP searches, may
provide an interpretation of the anomalous events recorded by the UKDMC and
Saclay NaI experiments. The present analysis points to the necessity of taking
into account surface nuclear and electron recoil interactions for a reliable
estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.
Dark Matter Search in the Edelweiss Experiment
Preliminary results obtained with 320g bolometers with simultaneous
ionization and heat measurements are described. After a few weeks of data
taking, data accumulated with one of these detectors are beginning to exclude
the upper part of the DAMA region. Prospects for the present run and the second
stage of the experiment, EDELWEISS-II, using an innovative reversed cryostat
allowing data taking with 100 detectors, are briefly described.Comment: IDM 2000, 3rd International Workshop on the Identification of Dark
Matter, York (GB), 18-22/09/2000, v2.0 minor modification
Status of the EDELWEISS Experiment
The status of the EDELWEISS experiment (underground dark matter search with
heat-ionisation bolometers) is reviewed. Auspicious results achieved with a
prototype 70 g Ge heat-ionisation detector under a 2 V reverse bias tension are
discussed. Based on gamma and neutron calibrations, a best-case rejection
factor, over the 15-45 keV range, of 99.7 % for gammas, with an acceptance of
94 % for neutrons, is presented first. Some operational results of physical
interest obtained under poor low radioactivity conditions follow. They include
a raw event rate of around 30 events/day/kg/keV over the same energy range,
and, after rejection of part of the background, lead to a conservative upper
limit on the signal of approximately 1.6 events/day/kg/keV at a 90 % confidence
level. Performance degrading surface effects of the detector are speculated
upon; and planned upgrades are summarized.Comment: 5 pages, 4 eps figures, LaTeX requires espcrc2.sty; Proceedings of
TAUP97, Gran Sasso, Italy, September 7-11, 199
A novel large-volume Spherical Detector with Proportional Amplification read-out
A new type of radiation detector based on a spherical geometry is presented.
The detector consists of a large spherical gas volume with a central electrode
forming a radial electric field. Charges deposited in the conversion volume
drift to the central sensor where they are amplified and collected. We
introduce a small spherical sensor located at the center acting as a
proportional amplification structure. It allows high gas gains to be reached
and operates in a wide range of gas pressures. Signal development and the
absolute amplitude of the response are consistent with predictions. Sub-keV
energy threshold with good energy resolution is achieved. This new concept has
been proven to operate in a simple and robust way and allows reading large
volumes with a single read-out channel. The detector performance presently
achieved is already close to fulfill the demands of many challenging projects
from low energy neutrino physics to dark matter detection with applications in
neutron, alpha and gamma spectroscopy.Comment: 13 pages, 13 figure
First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector
The EDELWEISS collaboration has performed a direct search for WIMP dark
matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a
low-background environment in the Laboratoire Souterrain de Modane. No nuclear
recoils are observed in the fiducial volume in the 30-200 keV energy range
during an effective exposure of 4.53 kg.days. Limits for the cross-section for
the spin-independent interaction of WIMPs and nucleons are set in the framework
of the Minimal Supersymmetric Standard Model (MSSM). The central value of the
signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.
- …