87 research outputs found

    Thermal counterflow in a periodic channel with solid boundaries

    Get PDF
    We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid 4He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments

    Species-specific, pan-European diameter increment models based on data of 2.3 million trees

    Get PDF
    ResearchBackground: Over the last decades, many forest simulators have been developed for the forests of individual European countries. The underlying growth models are usually based on national datasets of varying size, obtained from National Forest Inventories or from long-term research plots. Many of these models include country- and location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to apply models outside the region or country they were developed for. However, there is a clear need for more generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires the development of models that are applicable across the European continent. The purpose of this study is to develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil and nutrient deposition. Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables was done using a combination of forward and backward selection methods. The explained variance ranged from 10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size of the tree) contributed most to the explained variance, but environmental variables were important to account for spatial patterns. The type of environmental variables included differed greatly among species. Conclusions: The presented diameter increment models are the first of their kind that are applicable at the European scale. This is an important step towards the development of a new generation of forest development simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and applicable to a wider range of management systems than before. This allows European scale but detailed analyses concerning topics like CO2 sequestration, wood mobilisation, long term impact of management, etcinfo:eu-repo/semantics/publishedVersio

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    The phase lead of shear stress in shallow-water flow over a perturbed bottom

    No full text
    The analysis of flow over a slowly perturbed bottom (when perturbations have a typical length scale much larger than channel height) is often based on the shallow-water (or Saint-Venant) equations with the addition of a wall-friction term which is a local function of the mean velocity. By this choice, small sinusoidal disturbances of wall stress and mean velocity are bound to be in phase with each other. In contrast, studies of shorter-scale disturbances have long established that a phase lead develops between wall stress and mean velocity, with a crucial destabilizing effect on sediment transport along an erodible bed. The purpose of this paper is to calculate the wall-shear stress under large length-scale conditions and provide corrections to the Saint-Venant model

    Acoustic streaming past a vibrating wall

    No full text
    The classic phenomenon of acoustic streaming is reconsidered for the case in which the boundary layers on the vibrating and the still walls are of comparable importance, in the small-gap configuration suitable for an ultrasonic motor. The effect of temperature oscillations is included in the analysis, as well as is the impedance matching with the elastic oscillations in the vibrating wall

    Consistent section-averaged equations of quasi-onedimensional laminar flow

    No full text
    Section-averaged equations of motion, widely adopted for slowly varying flows in pipes, channels and thin films, are usually derived from the momentum integral on a heuristic basis, although this formulation is affected by known inconsistencies. We show that starting from the energy rather than the momentum equation makes it become consistent to first order in the slowness parameter, giving the same results that have been provided until today only by a much more laborious two-dimensional solution. The kinetic-energy equation correctly provides the pressure gradient because with a suitable normalization the first-order correction to the dissipation function is identically zero. The momentum equation then correctly provides the wall shear stress. As an example, the classical stability result for a free falling liquid film is recovered straightforwardly
    corecore