11 research outputs found

    Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering

    Get PDF
    Damage of the hydrogenated amorphous/crystalline silicon interface passivation during transparent conductive oxide sputtering is reported. This occurs in the fabrication process of silicon heterojunction solar cells. We observe that this damage is at least partially caused by luminescence of the sputter plasma. Following low-temperature annealing, the electronic interface properties are recovered. However, the silicon-hydrogen configuration of the amorphous silicon film is permanently changed, as observed from infra-red absorbance spectra. In silicon heterojunction solar cells, although the as-deposited film’s microstructure cannot be restored after sputtering, no significant losses are observed in their open-circuit voltag

    Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells

    Get PDF
    In amorphous/crystalline silicon heterojunction solar cells, optical losses can be mitigated by replacing the amorphous silicon films by wider bandgap amorphous silicon oxide layers. In this article, we use stacks of intrinsic amorphous silicon and amorphous silicon oxide as front intrinsic buffer layers and show that this increases the short-circuit current density by up to 0.43 mA/cm2 due to less reflection and a higher transparency at short wavelengths. Additionally, high open-circuit voltages can be maintained, thanks to good interface passivation. However, we find that the gain in current is more than offset by losses in fill factor. Aided by device simulations, we link these losses to impeded carrier collection fundamentally caused by the increased valence band offset at the amorphous/crystalline interface. Despite this, carrier extraction can be improved by raising the temperature; we find that cells with amorphous silicon oxide window layers show an even lower temperature coefficient than reference heterojunction solar cells (-0.1%/K relative drop in efficiency, compared to -0.3%/K). Hence, even though cells with oxide layers do not outperform cells with the standard design at room temperature, at higher temperatures—which are closer to the real working conditions encountered in the field—they show superior performance in both experiment and simulation

    Planet Hunters VII. Discovery of a New Low-Mass, Low-Density Planet (PH3 c) Orbiting Kepler-289 with Mass Measurements of Two Additional Planets (PH3 b and d)

    Get PDF
    We report the discovery of one newly confirmed planet (P=66.06P=66.06 days, RP=2.68±0.17R⊕R_{\rm{P}}=2.68\pm0.17R_\oplus) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P=34.55P=34.55 days, RP=2.15±0.10R⊕R_{\rm{P}}=2.15\pm0.10R_\oplus) and Kepler-289-c (P=125.85P=125.85 days, RP=11.59±0.10R⊕R_{\rm{P}}=11.59\pm0.10R_\oplus), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:41:2:4 Laplace resonance. The outer planet has very deep (∌1.3\sim1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∌1\sim1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M∗=1.08±0.02M⊙M_*=1.08\pm0.02M_\odot, R∗=1.00±0.02R⊙R_*=1.00\pm0.02R_\odot, and Teff=5990±38T_{\rm{eff}}=5990\pm38 K. The middle planet's large TTV amplitude (∌5\sim5 hours) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M=7.3±6.8M⊕M=7.3\pm6.8M_\oplus, 4.0±0.9M⊕4.0\pm0.9M_\oplus, and M=132±17M⊕M=132\pm17M_\oplus, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ=1.2±0.3\rho=1.2\pm0.3 g/cm3^3 for a planet of its mass, requiring a substantial H/He atmosphere of 2.1−0.3+0.82.1^{+0.8}_{-0.3}% by mass, and joins a growing population of low-mass, low-density planets.Comment: 21 pages, 10 figures, 5 tables, accepted into Ap

    Silicon heterojunction solar cells on n- and p-type wafers with efficiencies above 20%

    Get PDF
    A systematic comparison of front- and rear-emitter silicon heterojunction solar cells produced on nand p-type wafers was performed, in order to investigate their potential and limitations for high efficiencies. Cells on p-type wafers suffer from reduced minority carrier lifetime in the low-carrier-injection range, mainly due to the asymmetry in interface defect capture cross sections. This leads to slightly lower fill factors than for n-type cells. However, these losses can be minimized by using high-quality passivation layers. High Vocs were obtained on both types of FZ wafers: up to 735 mV on n- and 726 mV on p-type. The best Voc measured on CZ p-type wafers was only 692 mV, whereas it reached 732 mV on CZ n-type. The highest aperture-area certified efficiencies obtained on 4 cm2 cells were 22.14% (Voc=727 mV, FF=78.4%) and 21.38% (Voc=722 mV, FF=77.1%) on n- and p-type FZ wafers, respectively, demonstrating that heterojunction schemes can perform almost as well on high-quality p-type as on ntype wafers. To our knowledge, this is the highest efficiency for a full silicon heterojunction solar cell on a p-type wafer, and the highest Voc on any p-type crystalline silicon device with reasonable FF

    21% efficiency silicon heterojunction solar cells produced with very high frequency PECVD

    Get PDF
    Silicon heterojunction solar cells have high open-circuit voltages thanks to excellent passivation of the wafer surfaces by thin intrinsic amorphous silicon (a-Si:H) layers deposited by plasma-enhanced chemical vapor deposition (PECVD). By using in-situ plasma diagnostics and ex-situ film characterization, we show that the best a-Si:H films for passivation are produced from deposition regimes close to the amorphous-to-crystalline transition. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells. 4 cm2 solar cells were produced with fully industry-compatible processes, yielding open-circuit voltages up to 725 mV and aperture area efficiencies up to 21%

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore