145 research outputs found

    Active Thermal Architecture: Design and Status

    Get PDF
    This paper presents a design update for the Active Thermal Architecture (ATA) project. ATA is a joint effort between Utah State University and the Jet Propulsion Laboratory, funded by the NASA Small Spacecraft Technology Program (SSTP). The objective of the ATA is to develop advanced active thermal control technologies for Small Satellites in support of cryogenic electro-optical instrumentation. Specifically, the development of a 1U ground-based prototype of a single-phase, two-stage mechanically pumped fluid loop based active thermal control subsystem targeted at 6U CubeSat platforms and above. The first stage utilizes a micro-pump to circulate working fluid between an integrated heat exchanger and a deployed tracking radiator. This heat exchange provides general thermal management to the ATA system and CubeSat. The second stage consists of a miniature cryocooler, which directly provides cryogenic cooling to payload instrumentation. Ultrasonic Additive Manufacturing techniques simplify and miniaturize the ATA system by embedding the flow channels directly into the heat exchanger and the external radiator. The ATA system features dual rotary union fluid joints that, along with a micro-motor, allow for a two-axis deployment of the radiator and solar tracking. The ATA also includes a passive vibration control system which, isolates the optical payload from the jitter induced by the active systems. ATA has been fully prototyped and tested for radiator deployment and tracking. ATA is a second phase effort with the integrated pumped fluid loop and radiator previously demonstrated by the Active CryoCubeSat SSTP. This technology is suited for the thermal control of any high-powered spacecraft subsystem or the general thermal maintenance of a CubeSat’s environment. This project hopes to maturate all relevant technologies to a TRL of 5 or

    Below-Ground Biomass in Healthy and Impaired Salt Marshes

    Get PDF
    Twelve salt marshes in south Louisiana (USA) were classified as either ‘impaired’ or ‘healthy’ before a summer sample collection of above- and below-ground biomass and determination of sediment accretion rates. The above-ground biomass of plant tissues was the same at both impaired and healthy salt marshes and was not a good predictor of marsh health. However, below-ground root biomass in the upper 30 cm was much lower in the impaired marshes compared to the healthy marshes. Compromises to root production apparently occur before there is an obvious consequence to the above-ground biomass, which may quickly collapse before remedial action can be taken. The subsequent change in vertical position of the marsh surface may be equivalent to many years of accretion, and be irreversible within decades without considerable effort. These results are consistent with the hypothesis that it is the plant’s below-ground accumulation of organic matter, not inorganic matter that governs the maintenance of salt marsh ecosystem in the vertical plane. Reversing the precursor conditions leading to marsh stress before the collapse of the above-ground biomass occurs is therefore a prudent management objective and could be easier than restoration

    The Near Earth Object (NEO) Scout Spacecraft: A Low-cost Approach to In-situ Characterization of the NEO Population

    Get PDF
    This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (<0.3 AU) to the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations

    Coastal Wetland Restoration through the lens of Odum\u27s theory of ecosystem development

    Get PDF
    Advancing ecological restoration assessments requires a more detailed consideration of species interactions and ecosystem processes. Most restoration projects rely on a few metrics not always directly linked with ecological theory. Here, we used Odum\u27s theory of ecosystem development to assess and compare the ecosystem structure and services of created marshes (4–6 years old) with preexisting, reference marshes in a brackish water region of the Mississippi River Delta. We built ecosystem models for created and reference marshes that integrated large datasets of stomach contents, stable isotopes, and taxa abundances. Despite strong resemblance in community structure, created marshes were at an earlier succession stage compared to the reference marshes, having lower biomass (including exploited species), higher biomass turnover and production, less dependence on detritus, lower material cycling, and less energy flowing through specialist pathways. Although preserving preexisting marshes should be a priority, created marshes may still be an important tool for the restoration of coastal areas and their ecosystem services. In addition, our results show that comparisons of species biodiversity alone may fail to capture essential differences in ecosystem processes between habitats, which reinforces the importance of ecosystem modeling approaches to assess restoration projects

    Science CONOPS for Application of SPORT Mission Data to Study Large (~1000km) Ionospheric Plasma Depletions

    Get PDF
    The Scintillation Prediction Observations Research Task (SPORT) mission is a single 6U CubeSat space weather satellite planned for an October 2022 launch into an ISS-like orbit. The primary purpose of the SPORT mission is to determine the longitudinal effects on equatorial plasma bubble (EPB) growth resulting from the offset dipole magnetic field of the Earth. By combining field and plasma measurements from SPORT with other low-altitude (i.e., alt \u3c 1000 km) spacecraft, it is possible to investigate large-scale (\u3e 1000 km) EPB structures. The types of investigation made possible by measurements from SPORT and other contemporaneous missions include 1) dynamics of depleted magnetic flux tubes; 2) dynamics of field-aligned EPB expansion versus propagation speed; 3) EPB vertical extent; and 4) EPB temporal evolution. To support these investigation types, the respective modes of conjunctions are: 1) simultaneous intersection of a magnetic flux tube; 2) intersection of magnetic flux tube separated in time; 3) Simultaneous Latitude/Longitude position conjunction; and 4) Non-simultaneous latitude/longitude position conjunction. This paper will summarize the SPORT satellite and data used for Science CONOPS to accomplish these objectives

    Can biodiversity of preexisting and created salt marshes match across scales? An assessment from microbes to predators

    Get PDF
    Coastal wetlands are rapidly disappearing worldwide due to a variety of processes, including climate change and flood control. The rate of loss in the Mississippi River Delta is among the highest in the world and billions of dollars have been allocated to build and restore coastal wetlands. A key question guiding assessment is whether created coastal salt marshes have similar biodiversity to preexisting, reference marshes. However, the numerous biodiversity metrics used to make these determinations are typically scale dependent and often conflicting. Here, we applied ecological theory to compare the diversity of different assemblages (surface and below-surface soil microbes, plants, macroinfauna, spiders, and on-marsh and off-marsh nekton) between two created marshes (4–6 years old) and four reference marshes. We also quantified the scale-dependent effects of species abundance distribution, aggregation, and density on richness differences and explored differences in species composition. Total, between-sample, and within-sample diversity (Îł, ÎČ, and α, respectively) were not consistently lower at created marshes. Richness decomposition varied greatly among assemblages and marshes (e.g., soil microbes showed high equitability and α diversity, but plant diversity was restricted to a few dominant species with high aggregation). However, species abundance distribution, aggregation, and density patterns were not directly associated with differences between created and reference marshes. One exception was considerably lower density for macroinfauna at one of the created marshes, which was drier because of being at a higher elevation and having coarser substrate compared with the other marshes. The community compositions of created marshes were more dissimilar than reference marshes for microbe and macroinfauna assemblages. However, differences were small, particularly for microbes. Together, our results suggest generally similar taxonomic diversity and composition between created and reference marshes. This provides support for the creation of marsh habitat as tools for the maintenance and restoration of coastal biodiversity. However, caution is needed when creating marshes because specific building and restoration plans may lead to different colonization patterns

    GWAS of QRS Duration Identifies New Loci Specific to Hispanic/Latino Populations

    Get PDF
    BACKGROUND: The electrocardiographically quantified QRS duration measures ventricular depolarization and conduction. QRS prolongation has been associated with poor heart failure prognosis and cardiovascular mortality, including sudden death. While previous genome-wide association studies (GWAS) have identified 32 QRS SNPs across 26 loci among European, African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has not been previously explored. METHODS: We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n = 15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age, sex, global ancestry, clinical and study-specific covariates). Study-specific results were combined using fixed-effects, inverse variance-weighted meta-analysis. RESULTS: We identified six loci associated with QRS (P CONCLUSIONS: Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci, underscoring the utility of extending large scale genomic studies to currently under-examined populations

    Assessment of Medical Students’ Shared Decision-Making in Standardized Patient Encounters

    Get PDF
    BackgroundShared decision-making, in which physicians and patients openly explore beliefs, exchange information, and reach explicit closure, may represent optimal physician-patient communication. There are currently no universally accepted methods to assess medical students' competence in shared decision-making.ObjectiveTo characterize medical students' shared decision-making with standardized patients (SPs) and determine if students' use of shared decision-making correlates with SP ratings of their communication.DesignRetrospective study of medical students' performance with four SPs.ParticipantsSixty fourth-year medical students.MeasurementsObjective blinded coding of shared decision-making quantified as decision moments (exploration/articulation of perspective, information sharing, explicit closure for a particular decision); SP scoring of communication skills using a validated checklist.ResultsOf 779 decision moments generated in 240 encounters, 312 (40%) met criteria for shared decision-making. All students engaged in shared decision-making in at least two of the four cases, although in two cases 5% and 12% of students engaged in no shared decision-making. The most commonly discussed decision moment topics were medications (n = 98, 31%), follow-up visits (71, 23%), and diagnostic testing (44, 14%). Correlations between the number of decision moments in a case and students' communication scores were low (rho = 0.07 to 0.37).ConclusionsAlthough all students engaged in some shared decision-making, particularly regarding medical interventions, there was no correlation between shared decision-making and overall communication competence rated by the SPs. These findings suggest that SP ratings of students' communication skill cannot be used to infer students' use of shared decision-making. Tools to determine students' skill in shared decision-making are needed
    • 

    corecore