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A new approach to NEO exploration exploiting CubeSat technology  

• Numerous NEOs pass close (< 0.3 AU) to the Earth-Moon system every 

year 

• NEO-Scouts to rendezvous with target NEOs during close approach to 

the Earth-Moon system 

 Small largely “COTS” spacecraft launched as secondary payloads 

 Short mission duration (100 to 400 days) to reduce: 

– Spacecraft hardware reliability requirements/cost 

– Telemetry system power/size/cost   

– Spacecraft operations cost   

– Mission success risk 

 Short mission duration (100 to 400 days) to increase: 

– Rate of data return from NEO population 

• Benefits 

 High rate of return of in-situ measurements of NEO physical properties supporting 

Global Exploration Roadmap objectives at relatively low dollar cost 

 

 



NEO-Scout Mission Objectives 

• Our present knowledge of NEO surface and bulk properties is not sufficient to support 

high-confidence design and verification of NEO missions and mission hardware 

 Physical size, density, spin rate, surface mechanical properties, composition and volatiles 

content are unknown for most NEOs.   

 Recent NASA efforts to define an asteroid retrieval/redirection mission architecture struggled 

with the largely unknown and wide possible range of possible physical properties of the target 

NEOs.  

• NEO-Scout will perform a limited set of target physical characterization measurements 

designed to provide:  

 Ground truth data supporting interpretation of remote sensing observations of NEOs in the 

visible, near infrared, thermal infrared, and radar wavelength ranges 

 Data supporting high-confidence engineering hardware and mission design for more ambitious 

manned and robotic missions 

– NEO physical dimensions and density 

– NEO appearance and albedo 

– NEO surface mechanical properties 

– NEO  surface mineralogy 

– NEO water/volatiles content  

• NEO-Scout can close some of these important strategic knowledge gaps  
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NEO-Scout Concept of Operations 

• NEO-Scout Spacecraft can be launched as either secondary or primary 

payloads on launch vehicles placing primary payloads in GEO,  cis-

Lunar space or Earth escape trajectories  

 After placement by the launch vehicle, the NEO-Scout(s) can begin transit to the 

target NEOs immediately or loiter as needed prior to departure for rendezvous with 

the target 

 Multiple NEO-Scouts can be launched on a carrier vehicle (e.g. a Boeing 702 SP) 

and  then begin transit to target NEOs as required 

• NEO-Scout is designed to operate at GEO and beyond 

 Solar electric propulsion (as described in the following)  

 Spiral out from LEO is not considered a desirable option at this time 

– Radiation belt hardware degradation 

– Increases mission time 

 Largely autonomous spacecraft operations 

– Continuous Beacon Monitor mode operations (e.g. Deep Space 1 and New Horizons)  

– High rate telemetry on command only 

– Deep Space Network 34 meter dish receivers nominal  - 74 meter dishes as needed.  
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The NEO-Scout Spacecraft - Overview 

Dry Mass range < 20 kg 

Wet Mass range < 35 kg 

Delta V range < 10 km/s 

Mission Duration Range 100 to 400 days 

Solar Electric Propulsion Thrust to Weight Ratio > 3 x 10-4 

Maximum Distance to Earth  

at NEO Rendezvous 

0.3 AU 

Maximum Telemetry Range 0.3 AU 

Minimum Telemetry Data Rate at Maximum Range 1000 Bps 

Telemetry Bit Error Rate at Maximum Range  10-6  to  10-4 

Solar Particle Event (SPE) Survivability must survive 1 SPE 

Payload Mass/Mass Fraction 3.5 kg/0.10 

Single Spacecraft Cost Cap  < $ 15 M 
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NEO-Scout Spacecraft General Requirements and Characteristics 



NEO-Scout Design Approach  

• Define high level NEO-Scout performance requirements and general 

characteristics (summarized in previous chart) 

•  Next, we select a relatively challenging NEO target  

 determine the characteristics of a low-trust trajectory for rendezvous with 

that target within the 400 day maximum mission duration limit and,  

 determine if we can design and assemble a spacecraft to fly the mission 

while staying within the desired weight and cost limits. 

• The spacecraft dry weight limit is first combined with the maximum 

delta V requirement of 10 km/sec in the Tsiokolvsky rocket equation to 

calculate required propellant mass as a function of thruster specific 

impulse 

 Select the type of thruster type that would be able to meet the wet mass 

requirement  

 Only high specific impulse (hence exhaust velocity) electrostatic ion 

engines and Hall Effect thrusters can meet the propellant mass 

requirements for a 10 km/sec delta V and a 35 kg maximum wet mass   
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NEO-Scout Design Approach (continued) 

• Next survey commercially available high specific impulse satellite 

thrusters  

 Identify possible candidates for the NEO-Scout spacecraft design 

 An additional constraint appears at this point driven by the maximum 

mission duration limits  

– The NEO-Scout thrust-to-weight ratio needs to be high enough to enable 

acceleration to the desired final velocity in the allotted mission time   

• The balance of the design effort involved determining whether or not 

the remaining spacecraft systems could be assembled into an integrated 

functional spacecraft that conformed to the general requirements and 

constraints 

 Use mature (TRL 6/7 or above) commercially available components with 

LEO flight heritage whenever possible 

 The design was further refined and optimized the meet the more detailed 

delta V and trajectory requirements for the specific target NEO selected   
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NEO Target Selection for this Design Study 

Parameter Value Range 2007-SQ6 

Launch Epoch/Date Jan. 1, 2020 – Jan. 1, 2025 Oct. 10, 2023 

Flight Time, Days  <365 105 

Closest Approach at 

Rendezvous, AU 

< 0.15 0.05 

Orbital Inclination, Degrees < 10 9.101 

Eccentricity < 0.15 0.1456 

Semi-major Axis, AU 0.7 to 1.3  1.0430 
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• To find NEOs whose orbit allows a rendezvous trajectory within the constraints of the NEO-Scout requirements, 

NASA’s JPL/NEO/NHAT database was used  

• This database includes all known NEO orbital elements and lists possible rendezvous and return trajectories using an 

impulsive Lamberts Problem solver 

• Due to the large number of NEOs, a table was created from those which fall under the constraints shown in the table 

below . From these constraints, 2007 SQ6 was chosen, the constrained values for this NEO are included in the table 



Trajectory and rendevous analysis – NEO 2007 SQ6 

• The 2007 SQ6 rendezvous trajectory reported here 

constitutes proof of concept that low thrust 

microsatellites will be able to rendezvous with 

asteroids that are not optimal targets, and therefore 

proves that low thrust microsatellite exploration of the 

NEO population is possible in general  

• 2007 SQ6 was selected, not because it is an easy 

target, but instead because it is difficult to reach  
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Engine Burn Epoch Engine 

Burn Start 

Epoch Engine 

Burn Stop 

Delta V 

(m/sec) 

Propellant 

Consumpti

on (kg) 

Reason for Burn 

1 23 Sept. 2022 

06:58 UTC 

26, Oct, 2022 

22:09 UTC 

5628.35 7.291 Inclination 

Change; Lower 

Periapsis;   

Raise Apoapsis 

2 23 Jan. 2023 

21:34 UTC 

31 Jan, 2023 

16:26 UTC 

1639.5 1.673 Inclination and 

apse line 

change 

3 11 Aug. 2023 

21:34 UTC 

15 Aug. 2023 

0:00 UTC 

0.672 0.672 Orbit matching 

Total 23 Sept. 

2022, 06:58 

UTC 

15 Aug. 2023, 

0:00 UTC 

7978.69 9.636 2007 SQ6 

Rendezvous 



Proximity Operations at 2007 SQ6 
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A - Shows the NEO-Scout in a Passive Orbit over 1.157 days with initial velocity. Figure 

B - Shows the velocity as a function of flight time (a non-spherical shape is assumed for 

2007SQ6 for purposes of demonstration) 

A - Station keeping trajectory. B - Station keeping velocity profile. C - 

Asteroid launch trajectory. D - Asteroid launch velocity profile. 

• Estimated diameter of 2007 SQ6 = 248 meters  and 

    assumed density of 2500 kg/m3 =>  g =  8.7 x 10−5 (m/s2);  

    assuming a spherical shape -  

• near surface orbital velocity = 10.4 cm/s;  

• escape velocity = 14.7 cm/s  

• Since there is currently no shape model of 2007 SQ6, a scale model of 433 Eros with maximum dimension of 248 

meters is used for the asteroid proximity operations simulations 

• NEO-Scout will use 12,  0.050 N cold gas attitude control thrusters for proximity operations. 

• NEO-Scout can accelerate to escape velocity from the asteroid surface in 15 seconds using two cold gas 

thrusters only.  

• Actual NEO mass, density, and shape determined upon arrival at the asteroid 



The NEO-Scout Spacecraft - Propulsion  
The specific commercial products mentioned are examples only.  Such mention does not constitute endorsement by the USG 

• Main Propulsion - Busek BHT 600 Hall Effect 

Thruster 

 

 

– Spacecraft dry mass 20 kg 

– 9.5 kg I2 propellant  

– Total thruster operating time  = 47 days 

– Total Delta V  =  7.979 km/sec 

• Proximity operations - The Marotta Cold Gas 

Microthrusters (CGMs)  

– 12 thrusters/spacecraft and for each thruster 

» Thrust of 0.05 N, an Isp of 65 s, a mass of less than 60 g,  N2 

propellant.  

» Open response time of 5 ms; close response time of 5 ms 

» Ideal operating pressure of 100 psia.  

– The Marotta thruster is flight qualified and was previously 

developed for the GSFC Nanosats and the ST-5 

– 4 CGMs operating for 15 seconds can accelerate the spacecraft 

from rest on the surface of 2007 SQ6 to escape velocity 
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Engine Tested Fuels Thrust, mN Isp , s Power Input, W Mass, kg 

Busek BHT-600 Xe, Ar, Kr, I, Bi, Zn, 

Mg 

39 (at 600W) 1585 (at 600W) 300-800 3 

Busek Hall Engine operating on I2 

Placement of Marotta CGM thrusters 



The NEO-Scout Spacecraft - Telemetry 
The specific commercial products mentioned are examples only.  Such mention does not constitute endorsement by the USG 

• Beacon Monitor 

 Deep Space 1 technology validation 

 S-Band 

 Commercially available 1 to 2  Watt CubeSat S-Band 

transmitter with matching wide beam antennas 

 Beacon Monitor on-board software package 

• High Rate Telemetry 

 X-band 

 Link budget for different combinations of satellite high 

gain antenna diameter shown to the right 

– 34 meter Deep Space Network ground stations assumed 

 Commercial 2 watt X-band CubeSat transmitter 

with 30 cm diameter high gain directional 

satellite antenna 

– Transmitter power increase to 10W using X-band linear 

amplifier (IC) for short periods of time to increase bit rate 

 1 megabit image downlink times @ 0.1 AU 

– 2 Watts/30 cm antenna - 63 seconds 

– 10 Watts/30 cm antenna -  13 seconds 
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Expected NEO-Scout down link bit rates as a function of 

distance from Earth  (AU) for 4 different combinations of 

satellite high gain antenna diameter and satellite X-band 

transmitter output power; e.g. BR10W50 = 10 W transmitter 

and 50 cm dish.  Use of the 34 meter diameter DSN ground 

stations is assumed and the link margin is greater than 1 dB is 

all cases. 

  



The NEO-Scout Spacecraft 
The specific commercial products mentioned are examples only.  Such mention does not constitute endorsement by the USG  
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• Command and Data Handling 

 Deep Space 1 metric validation of the Data Processing System 

are shown to the right 

 Tyvek Intrepid Pico-Class 

– Compatible with autonomous software 

– Capable of MicroSD data storage 

– Variety of  interfaces that are compatible with onboard 

avionics 

– 2 additional lower level processors for redundancy 

• Attitude Determination and Control 

 Ability to interface with GNC 

 Micro Reaction Wheel Module (BCT XACT) provides an axial 

Torque of 0.6 mN m 

 0.05 N Cold Gas thrusters capable of reaction wheel 

desaturation and proximity maneuvers 

• Guidance, Navigation, and Control 

 NanoTracker (included in the BCT XACT) gets orientation with 

respect to celestial reference frame (with 2 s processing delay) 

 Position and velocity can also be determined with the S-Band 

antenna via communication with DSN and ground stations 

 

 

Processor 

(CPU) 

Tyvak Intrepid 

Pico-Class 

Deep Space 1 

(RAD6000) 

RAM 128 MB 128 MB 

Flash 512 MB 6 MB 

Processor 

Speed 

400 MHz 20 MHz 

Radiation 

Protection 

not specified 

Latch-up 

protected 

> 100 krad 

Latch-up 

Immune 

Mass .055 kg ~0.9 kg 



The NEO-Scout Spacecraft 
The specific commercial products mentioned are examples only.  Such mention does not constitute endorsement by the USG  
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• Electrical Power and Power Management 

• Peak Power Requirements 
• 650 W (engine on) 

• 100 W (engine off) 

• PV arrays 

• 4.05 kg (2.3 m^2) generates excess of 650 W at 27.7% efficiency 

• Power Processing Systems 

• Busek PPU-600 selected to convert solar energy to the required 

voltage input for the BHT-600’s operation 

• An additional PDM was selected for the low voltage avionics 

• Thermal Design and Control 

• Operation: 0 to 50 ºC, Survival: -20 to 70 ºC 

• Passive MLI – Aluminized Teflon 

• 0.7AU-1.3AU 

• The PMS and thruster must be thermally isolated from 

neighboring modules and connected to a heat sink 

• Foil heaters are used for the thermal throttle in the PMS 

system 

UTJ Solar cell 

PDM for low voltage avionics  



NEO-Scout Payload Options 
The specific commercial products mentioned are examples only.  Such mention does not constitute endorsement by the USG 
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Instrument Measurements Mass (kg) 

FLIR MLR-2k LIDAR  Distance to Object 0.115 

NanoCam C1U Visible Imaging: Size, Appearance, Albedo 0.166 

FLIR Tau SWIR Near IR Imaging: Size, Appearance, Albedo 0.131 

FLIR Quark 640 Thermal IR Imaging: Surface Temperature Distribution 0.028 

Surface Contact/Penetrator (TBD) Mechanical Impact Properties 0.5 

Miniature Radar Altimeter T2 Distance to Object and Surface Profile 0.375 
Argus 1000 IR Spectrometer Near IR spectrometer for surface mineralogy 0.23 

Compact Neutron Albedo 

Instrument (TBD) 

Water, Hydrogen, Trapped Volatiles (Lunar Prospector) 0.5 

Alpha Proton Spec. (TBD) Composition: Light elements, Na, Al, Mg, Si, S (Mars 

Sojourner) 

0.5 

• To Be Developed (TBD) 

• Bold red => CubeSat LEO flight heritage 
• Risk assessment/possible modification for interplanetary environment 

• Bold black  =>  Interplanetary flight heritage on larger spacecraft 
• Development work required for NEO-Scout integration 

• Plain text =>  commercial products only – no flight heritage 
• Development work required for NEO-Scout integration with assessment/upgrade for interplanetary flight 

environment 



The NEO-Scout Spacecraft 
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I2 Tank 

N2 Tank 

PPU 
Reaction Wheels 

PV Servos 

Avionics Payloads 

Parameter  Design Criteria Achieved Metrics 
Dry Mass range < 20 kg 15 kg 

Wet Mass range < 35 kg 24.5 kg 

Delta V range < 10 km/s 7.629 km/s 

Maximum Mission 

Duration 

100 to 400 days 345 days 

Maximum Distance to 

Earth at Rendezvous 

0.3 AU 0.18 AU 

Maximum Telemetry 

Range 

0.3 AU 0.3 AU 

Minimum Telemetry 

Data Rate 

2000 to 10000 Bps  2000 Bps 

Spacecraft Cost $ 15M $15M to $25M  



NEO-Scout Cost Model  

• Aerospace Corporation Small Satellite Cost Model 

 Based on historical cost data from satellite projects substantially larger than contemporary 

CubeSat projects including the one proposed here 

 The model has been used successfully for NEO-Scout sized spacecraft projects 

– Satellite complexity index of 0.3 to 0.4 

– Wet mass 35 kg 

– Conservative cost estimate range $15M to $25M for the first flight unit including software 

and limited spacecraft qualification and acceptance testing 

• Recent 3U CubeSat project cost examples 

 Boeing PhantomPhoenix Nano commercially available for an estimated $2M -$3M including 

qualification and acceptance testing 

– Two string avionics system redundancy and 1.8 kg of payload capacity 

– LEO service  

 Several commercial CubeSat suppliers offer single string 3U spacecraft for LEO service for < 

$1M 

 NASA Ames Research center has completed a number of  successful 3U CubeSat flight 

projects in less than 2 years and at a total cost of less than $10M 
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Summary and Conclusions 

19 

• Technology tends to go from large to small, so why not satellites? 

• The NEO scout concept is aligned support NASA’s Space Technology Roadmap  

 TA-07 In Situ Resource Utilization - Destination Reconnaissance 

• Limited specific technology development and refinement is indicated 

• The preliminary NEO-SCOUT cost model is compatible with the NASA budgetary 

environment 

 Cost and scope growth will need to be controlled 

• The NEO-Scout is a viable, low cost alternative to expensive Discovery class missions 

 The technical feasibility of the NEO-Scout concept has been demonstrated 

 Lightweight subsystems allow for lower thrust, decreased flight time, and less fuel used. 

 Utilizing COTs products allows for decreased research turnaround time. 

Spacecraft NEO-Scout Deep Space 1 

Cost,  million USD 15 to 25  152.3 

Mass, kg 24.5 486.3 

Span, m 7.5 14.2 



BACK-UP 
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NEO-Scout Programmatics 
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PROBLEM / NEED BEING ADDRESSED

PROGRAM DESCRIPTION:

An affordable approach to in-situ characterization of the Near Earth 

Object  (NEO) Population: The NEO-Scout Spacecraft

• Discovery Class Spacecraft

–Examples : Osiris-REx, Dawn, 

Hayabusa, Rosetta, Deep Space-1

–Weight (wet): 200 to 1500 kg

–Multi year mission timelines

–Limited number of targets per 

spacecraft

–Program Cost range  $100 to 

$800 million dollars per 

spacecraft/mission

• The NEO population is 

known to be highly diverse

–Characterizing one or two 

targets doesn’t characterize the 

population as such

–CubeSat based technology and 

miniaturized/low power avionics 

and instruments can enable 

characterization of many NEOs 

at relatively low cost

–Supports high confidence target 

selection, mission planning, and 

hardware design for more 

ambitious and costly missions

• Cost for in-situ 

characterization of 20 NEOs 

with Discovery class 

spacecraft

– ~ $8 billion (@ $400M ea)

• Cost for in-situ 

characterization of 20 NEOs 

with NEO-Scouts

– ~ $ 0.3 billion (@$15M ea)

• Short Term Goal

–Authorization and funding to 

proceed with design and build 

of technology demonstration 

spacecraft for flight 

demonstration on EM-1 or ISS

• Long Term Goal

–Authorization and funding to 

proceed with full 

implementation of NEO-Scout 

program in support of eventual 

manned NEO operations

An affordable approach to providing in-situ
characterization of NEOs is needed to support
high-confidence hardware design and mission
planning for more ambitious manned and robotic
programs

• Produce in-situ characterization data on 20  

NEOs between 2017 and 2027 

–Rendezvous/landing during close approach of 

NEO to Earth-Moon system (<0.3 AU)

–Neo-Scouts depart from GTO, GEO, or cis-

lunar space

– escape trajectories can be provided by the 

launch vehicle

• NEO-Scout Spacecraft

–CubeSat technology with limited upgrades for 

short term (<400 days)interplanetary operations

– 15 to 30 kg wet mass

–High impulse solar electric propulsion with 

high thrust to weight ratio (~10-4 to 10-3) and a 

total delta V capability of 6 to 12 km/sec

– 100 to 400 day mission timeline 

–Telemetry range 0.3 AU or less.

– Spacecraft cost cap objective set at $15M 



NEO-Scout Programmatics (Cont.) 
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Description and Objectives

Approach Cost, Schedule, and Status

An affordable approach to in-situ characterization of the Near Earth 

Object  (NEO) Population: The NEO-Scout Spacecraft

• Program Management Approach

– NASA to partner with universities and small innovation driven 

CubeSat companies to produce the technology demonstration 

unit and the fully capable NEO-Scout fleet

• Multiple NASA center participation 

• Rensselaer Polytechnic Institute and Utah State University

– Spacecraft integration and acceptance testing by NASA CS and 

site support contractors 

–Rigorous cost control with extensive use of verifiable COTS 

components to manage program cost

• Flight proven NASA/Ames  low-cost  CubeSat project and 

hardware management approach

• Status  - the NEO-Scout project is in the concept formulation stage 

with no available funding at this time

– JSC CS FTE with limited Ames/JPL and private sector collaboration

– NEO-Scout abstract accepted at Space-Ops 2014

– Major ESMD Senior Design Project (Rensselaer) reporting out 12/12/13 –

Second semester effort planned

• Schedule

– None defined at this time: Still building advocacy and seeking 

management position on priority and funding

– Estimate two to three years from funding and project kick-off to flight 

ready hardware for the Short Term (EM – 1 flight) Objective

• Cost

– Short Term Objective: estimate  $10M to $15M for flight prototype

– Long Term Objective:  estimate $450M for Program 

• Short Term Objectives – Design, develop, build, test, and fly one 15 to 

30 kg (wet) NEO-Scout flight prototype to demonstrate  basic spacecraft 

functionality and qualify new technologies 

• Flight on EM-1 preferred with ISS as back-up plan

• Interplanetary GN&C (including prox-ops)

• Novel Solar Electric Propulsion System

• Long range (< 0.3 AU) communications and tracking

• Miniaturized sensors function and reliability 

• Long Term Objectives – Design develop build test and fly fully capable, 

15 to 30 kg (wet),  NEO-Scouts and implement the NEO population 

characterization campaign

• NEO size, albedo, and and spin rate determination

• NEO soft landings and surface property characterization 
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