180 research outputs found

    Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells.

    Get PDF
    Cell entry of hepatitis C virus, pseudoparticles (HCVpp) and cell culture grown virus (HCVcc), requires the interaction of viral glycoproteins with CD81 and other as yet unknown cellular factors. One of these is likely to be the scavenger receptor class B type I (SR-BI). To further understand the role of SR-BI, we examined the effect of SR-BI ligands on HCVpp and HCVcc infectivity. Oxidized low-density lipoprotein (oxLDL), but not native LDL, potently inhibited HCVpp and HCVcc cell entry. Pseudoparticles bearing unrelated viral glycoproteins or bovine viral diarrhea virus were not affected. A dose-dependent inhibition was observed for HCVpp bearing diverse viral glycoproteins with an approximate IC50 of 1.5 microg/mL apolipoprotein content, which is within the range of oxLDL reported to be present in human plasma. The ability of lipoprotein components to bind to target cells associated with their antiviral activity, suggesting a mechanism of action which targets a cell surface receptor critical for HCV infection of the host cell. However, binding of soluble E2 to SR-BI or CD81 was not affected by oxLDL, suggesting that oxLDL does not act as a simple receptor blocker. At the same time, oxLDL incubation altered the biophysical properties of HCVpp, suggesting a ternary interaction of oxLDL with both virus and target cells. In conclusion, the SR-BI ligand oxLDL is a potent cell entry inhibitor for a broad range of HCV strains in vitro. These findings suggest that SR-BI is an essential component of the cellular HCV receptor complex

    Starspot-induced optical and infrared radial velocity variability in T Tauri star Hubble 4

    Get PDF
    We report optical (6150 Ang) and K-band (2.3 micron) radial velocities obtained over two years for the pre-main sequence weak-lined T Tauri star Hubble I 4. We detect periodic and near-sinusoidal radial velocity variations at both wavelengths, with a semi-amplitude of 1395\pm94 m/s in the optical and 365\pm80 m/s in the infrared. The lower velocity amplitude at the longer wavelength, combined with bisector analysis and spot modeling, indicates that there are large, cool spots on the stellar surface that are causing the radial velocity modulation. The radial velocities maintain phase coherence over hundreds of days suggesting that the starspots are long-lived. This is one of the first active stars where the spot-induced velocity modulation has been resolved in the infrared.Comment: Accepted for publication in The Astrophysical Journa

    Precision radial velocities with CSHELL

    Get PDF
    Radial velocity identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near infrared radial velocity techniques. We present our methodology for achieving 58 m/s precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3-meter NASA IRTF. We also demonstrate our ability to recover the known 4 Mjup exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.Comment: 31 pages, 3 figures, 2 tables, accepted for publication in Ap

    A search for giant planet companions to t tauri stars

    Get PDF
    We present results from an ongoing multiwavelength radial velocity (RV) survey of the Taurus–Auriga star-forming region as part of our effort to identify pre-main-sequence giant planet hosts. These 1–3 Myr old T Tauri stars present significant challenges to traditional RV surveys. The presence of strong magnetic fields gives rise to large, cool star spots. These spots introduce significant RV jitter which can mimic the velocity modulation from a planet-mass companion. To distinguish between spot-induced and planet-induced RV modulation, we conduct observations at ∼6700Åand∼2.3μmand measure thewavelength dependence (if any) in theRVamplitude. CSHELL observations of the known exoplanet host Gl 86 demonstrate our ability to detect not only hot Jupiters in the near-infrared but also secular trends from more distant companions. Observations of nine very young stars reveal a typical reduction in RV amplitude at the longer wavelengths by a factor of ∼2–3. While we cannot confirm the presence of planets in this sample, three targets show different periodicities in the two wavelength regions. This suggests different physical mechanisms underlying the optical and the K-band variability

    Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones

    Get PDF
    Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples

    Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Get PDF
    Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation

    Mood and cognition in healthy older European adults: the Zenith study

    Get PDF
    YesBackground: The study aim was to determine if state and trait intra-individual measures of everyday affect predict cognitive functioning in healthy older community dwelling European adults (n = 387), aged 55-87 years. Methods: Participants were recruited from centres in France, Italy and Northern Ireland. Trait level and variability in positive and negative affect (PA and NA) were assessed using self-administered PANAS scales, four times a day for four days. State mood was assessed by one PANAS scale prior to assessment of recognition memory, spatial working memory, reaction time and sustained attention using the CANTAB computerized test battery. Results: A series of hierarchical regression analyses were carried out, one for each measure of cognitive function as the dependent variable, and socio-demographic variables (age, sex and social class), state and trait mood measures as the predictors. State PA and NA were both predictive of spatial working memory prior to looking at the contribution of trait mood. Trait PA and its variability were predictive of sustained attention. In the final step of the regression analyses, trait PA variability predicted greater sustained attention, whereas state NA predicted fewer spatial working memory errors, accounting for a very small percentage of the variance (1-2%) in the respective tests. Conclusion: Moods, by and large, have a small transient effect on cognition in this older sample

    Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120

    Get PDF
    A substantial fraction of broadly neutralizing antibodies (bnAbs) in certain HIV-infected donors recognizes glycan-dependent epitopes on HIV-1 gp120. Here, we elucidate how bnAb PGT 135 recognizes its Asn332 glycan-dependent epitope from its crystal structure with gp120, CD4 and Fab 17b at 3.1 Å resolution. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield to access the gp120 protein surface. Electron microscopy reveals PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. The combined structural studies of PGT 135, PGT 128 and 2G12 show this Asn332-dependent epitope is highly accessible and much more extensive than initially appreciated, allowing for multiple binding modes and varied angles of approach, thereby representing a supersite of vulnerability for antibody neutralization
    corecore