265 research outputs found

    Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics

    Get PDF
    Objectives: To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. Methods: A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroides cephalosporinase protein sequences, using the maximum likelihood method. The rate of cefotaxime degradation after incubation with OMVs produced by different Bacteroides species was quantified using a disc susceptibility test. The resistance of Salmonella Typhimurium and Bifidobacterium breve to cefotaxime in liquid culture in the presence of B. thetaiotaomicron OMVs was evaluated by measuring bacterial growth. Results: The B. thetaiotaomicron BT_4507 gene encodes a β-lactamase related to the CepA cephalosporinase of Bacteroides fragilis. OMVs produced by B. thetaiotaomicron and several other Bacteroides species, except Bacteroides ovatus, carried surface-associated β-lactamases that could degrade cefotaxime. β-Lactamase-harbouring OMVs from B. thetaiotaomicron protected Salmonella Typhimurium and B. breve from an otherwise lethal dose of cefotaxime. Conclusions: The production of membrane vesicles carrying surface-associated β-lactamases by Bacteroides species, which constitute a major part of the human colonic microbiota, may protect commensal bacteria and enteric pathogens, such as Salmonella Typhimurium, against β-lactam antibiotics

    Factors Influencing Spatial Variability in Nitrogen Processing in Nitrogen-Saturated Soils

    Get PDF
    Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest ratesof net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin,and N. Subsamples of mineral soil were extractedimmediately with 1 N KCl and analyzed for NH4+and NO3– to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence ofnitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and30°C), followed by 1 N KCl extraction and analysis for NH4+ and NO3–. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubation sat all temperatures supported earlier observations based on field incubations. At 30°C, rates from N- t reated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibitingno net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca:Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer

    Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake

    Get PDF
    We examine the dynamics of turbulence subgrid (or sub-filter) scales over a lake surface and the implications for large-eddy simulations (LES) of the atmospheric boundary layer. The analysis is based on measurements obtained during the Lake-Atmosphere Turbulent EXchange (LATEX) field campaign (August-October, 2006) over Lake Geneva, Switzerland. Wind velocity, temperature and humidity profiles were measured at 20Hz using a vertical array of four sonic anemometers and open-path gas analyzers. The results indicate that the observed subgrid-scale statistics are very similar to those observed over land surfaces, suggesting that the effect of the lake waves on surface-layer turbulence during LATEX is small. The measurements allowed, for the first time, the study of subgrid-scale turbulent transport of water vapour, which is found to be well correlated with the transport of heat, suggesting that the subgrid-scale modelling of the two scalars may be coupled to save computational resources during LE

    Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells

    Get PDF
    SummaryeNOS expression is elevated in human glioblastomas and correlated with increased tumor growth and aggressive character. We investigated the potential role of nitric oxide (NO) activity in the perivascular niche (PVN) using a genetic engineered mouse model of PDGF-induced gliomas. eNOS expression is highly elevated in tumor vascular endothelium adjacent to perivascular glioma cells expressing Nestin, Notch, and the NO receptor, sGC. In addition, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro, and induces the side population phenotype in primary glioma cell cultures. NO also increases neurosphere forming capacity of PDGF-driven glioma primary cultures, and enhances their tumorigenic capacity in vivo. Loss of NO activity in these tumors suppresses Notch signaling in vivo and prolongs survival of mice. This mechanism is conserved in human PDGFR amplified gliomas. The NO/cGMP/PKG pathway's promotion of stem cell-like character in the tumor PVN may identify therapeutic targets for this subset of gliomas

    Scale dependence of subgrid-scale model coefficients: An a priori study

    Get PDF
    Dynamic subgrid-scale models require an a priori assumption about the variation in the model coefficients with filter scale. The standard dynamic model assumes independence of scale while the scale dependent model assumes power-law dependence. In this paper, we use field experimental data to investigate the dependence of model coefficients on filter scale for the Smagorinsky and the nonlinear models. The results indicate that the assumption of a power-law dependence, which is often used in scale dependent dynamic models, holds very well for the Smagorinsky model. For the nonlinear model, the power-law assumption seems less robust but still adequat

    The distribution of plant consumption traits across habitat types and the patterns of fruit availability suggest a mechanism of coexistence of two sympatric frugivorous mammals

    Get PDF
    Understanding the mechanisms governing the coexistence of organisms is an important question in ecology, and providing potential solutions contributes to conservation science. In this study, we evaluated the contribution of several mechanisms to the coexistence of two sympatric frugivores, using western lowland gorillas (Gorilla gorilla gorilla) and central chimpanzees (Pan troglodytes troglodytes) in a tropical rainforest of southeast Cameroon as a model system. We collected great ape fecal samples to determine and classify fruit species consumed; we conducted great ape nest surveys to evaluate seasonal patterns of habitat use; and we collected botanical data to investigate the distribution of plant species across habitat types in relation to their “consumption traits” (which indicate whether plants are preferred or fallback for either gorilla, chimpanzee, or both). We found that patterns of habitat use varied seasonally for both gorillas and chimpanzees and that gorilla and chimpanzee preferred and fallback fruits differed. Also, the distribution of plant consumption traits was influenced by habitat type and matched accordingly with the patterns of habitat use by gorillas and chimpanzees. We show that neither habitat selection nor fruit preference alone can explain the coexistence of gorillas and chimpanzees, but that considering together the distribution of plant consumption traits of fruiting woody plants across habitats as well as the pattern of fruit availability may contribute to explaining coexistence. This supports the assumptions of niche theory with dominant and subordinate species in heterogeneous landscapes, whereby a species may prefer nesting in habitats where it is less subject to competitive exclusion and where food availability is higher. To our knowledge, our study is the first to investigate the contribution of plant consumption traits, seasonality, and habitat heterogeneity to enabling the coexistence of two sympatric frugivores
    corecore