950 research outputs found

    V. Woolf et H. Hesse, critiques et romanciers face aux clefs psychanalytiques

    Get PDF
    Actes du XXXVIIIe CongrÚs de la SFLGC, Université de Tours, 2012International audienc

    High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair

    Full text link
    We present the results of a set of numerical simulations aimed at studying reionization at galactic scale. We use a high resolution simulation of the formation of the Milky Way-M31 system to simulate the reionization of the local group. The reionization calculation was performed with the post-processing radiative transfer code ATON and the underlying cosmological simulation was performed as part of the CLUES project. We vary the source models to bracket the range of source properties used in the literature. We investigate the structure and propagation of the galatic ionization fronts by a visual examination of our reionization maps. Within the progenitors we find that reionization is patchy, and proceeds locally inside out. The process becomes patchier with decreasing source photon output. It is generally dominated by one major HII region and 1-4 additional isolated smaller bubbles, which eventually overlap. Higher emissivity results in faster and earlier local reionization. In all models, the reionization of the Milky Way and M31 are similar in duration, i.e. between 203 Myr and 22 Myr depending on the source model, placing their zreion between 8.4 and 13.7. In all models except the most extreme, the MW and M31 progenitors reionize internally, ignoring each other, despite being relatively close to each other even during the epoch of reionization. Only in the case of strong supernova feedback suppressing star formation in haloes less massive than 10^9 M_sun, and using our highest emissivity, we find that the MW is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl

    Towards Mixed Gr{\"o}bner Basis Algorithms: the Multihomogeneous and Sparse Case

    Get PDF
    One of the biggest open problems in computational algebra is the design of efficient algorithms for Gr{\"o}bner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faug{\`e}re, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gr{\"o}bner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations

    CPT symmetry and antimatter gravity in general relativity

    Full text link
    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∌5×1015 M⊙\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Neutralino Dark Matter beyond CMSSM Universality

    Get PDF
    We study the effect of departures from SUSY GUT universality on the neutralino relic density and both its direct detection and indirect detection, especially by neutrino telescopes. We find that the most interesting models are those with a value of M3∣GUTM_3|_{GUT} lower than the universal case.Comment: 20 pages, 12 figures, JHEP format. Figures improved for B&W, references added, typos and english correcte

    Do we live in the universe successively dominated by matter and antimatter?

    Full text link
    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of matter into antimatter may look as a Big Bang. Our mechanism prevents a singularity; a new cycle might start with an initial size more than 30 orders of magnitude greater than the Planck length, suggesting that there is no need for inflationary scenario in Cosmology. In addition, there is no need to invoke CP violation for explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous universe was dominated by antimatter

    Identification of backgrounds in the EDELWEISS-I dark matter search experiment

    Get PDF
    This paper presents our interpretation and understanding of the different backgrounds in the EDELWEISS-I data sets. We analyze in detail the several populations observed, which include gammas, alphas, neutrons, thermal sensor events and surface events, and try to combine all data sets to provide a coherent picture of the nature and localisation of the background sources. In light of this interpretation, we draw conclusions regarding the background suppression scheme for the EDELWEISS-II phase
    • 

    corecore