31 research outputs found

    Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean

    Get PDF
    Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 a± 0.5 a°C) winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1) and dissolved inorganic carbon (22 a± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006), led to differences in the dissolved oxygen anomaly and the chlorophyll <i>α</i>-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to ĝ̂'4.8 mmol mĝ̂'2 d−1) showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences. ©Author(s) 2010. CC Attribution 3.0 License

    Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas

    Get PDF
    Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ∌12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100–12,880 years ago generates a hydroclimate dipole with drier–colder conditions in Northern Europe and wetter–warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ∌180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas

    Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape

    Full text link
    Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-? signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.© 2022. The Author(s)

    Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)

    Get PDF
    Coccolithophores are key components of phytoplankton communities, exerting a critical impact on the global carbon cycle and the Earth’s climate through the production of coccoliths made of calcium carbonate (calcite) and bioactive gases. Microzooplankton grazing is an important mortality factor in coccolithophore blooms, however little is currently known regarding the mortality (or growth) rates within non-bloom populations. Measurements of coccolithophore calcite production (CP) and dilution experiments to determine microzooplankton (≀63 ”m) grazing rates were made during a spring cruise (April 2015) at the Central Celtic Sea (CCS), shelf edge (CS2), and within an adjacent April bloom of the coccolithophore Emiliania huxleyi at station J2. CP at CCS ranged from 10.4 to 40.4 ”mol C m−3 d−1 and peaked at the height of the spring phytoplankton bloom (peak chlorophyll-a concentrations ∌6 mg m−3). Cell normalised calcification rates declined from ∌1.7 to ∌0.2 pmol C cell−1 d−1, accompanied by a shift from a mixed coccolithophore species community to one dominated by the more lightly calcified species E. huxleyi and Calciopappus caudatus. At the CCS, coccolithophore abundance increased from 6 to 94 cells mL−1, with net growth rates ranging from 0.06 to 0.21 d−1 from the 4th to the 28th April. Estimates of intrinsic growth and grazing rates from dilution experiments, at the CCS ranged from 0.01 to 0.86 d−1 and from 0.01 to 1.32 d−1, respectively, which resulted in variable net growth rates during April. Microzooplankton grazers consumed 59 to >100% of daily calcite production at the CCS. Within the E. huxleyi bloom a maximum density of 1986 cells mL−1 was recorded, along with CP rates of 6000 ”mol C m−3 d−1 and an intrinsic growth rate of 0.29 d−1, with ∌80% of daily calcite production being consumed. Our results show that microzooplankton can exert strong top-down control on both bloom and non-bloom coccolithophore populations, grazing over 60% of daily growth (and calcite production). The fate of consumed calcite is unclear, but may be lost either through dissolution in acidic food vacuoles, and subsequent release as CO2, or export to the seabed after incorporation into small faecal pellets. With such high microzooplankton-mediated mortality losses, the fate of grazed calcite is clearly a high priority research direction

    Validation of the test for finding word retrieval deficits (WoFi) in detecting Alzheimer's disease in a naturalistic clinical setting

    Get PDF
    Background Detecting impaired naming capacity contributes to the detection of mild (MildND) and major (MajorND) neurocognitive disorder due to Alzheimer’s disease (AD). The Test for Finding Word retrieval deficits (WoFi) is a new, 50-item, auditory stimuli-based instrument. Objective The study aimed to adapt WoFi to the Greek language, to develop a short version of WoFi (WoFi-brief), to compare the item frequency and the utility of both instruments with the naming subtest of the widely used Addenbrooke’s cognitive examination III (ACEIIINaming) in detecting MildND and MajorND due to AD. Methods This cross-sectional, validation study included 99 individuals without neurocognitive disorder, as well as 114 and 49 patients with MildND and MajorND due to AD, respectively. The analyses included categorical principal components analysis using Cramer’s V, assessment of the frequency of test items based on corpora of television subtitles, comparison analyses, Kernel Fisher discriminant analysis models, proportional odds logistic regression (POLR) models and stratified repeated random subsampling used to recursive partitioning to training and validation set (70/30 ratio). Results WoFi and WoFi-brief, which consists of 16 items, have comparable item frequency and utility and outperform ACEIIINaming. According to the results of the discriminant analysis, the misclassification error was 30.9%, 33.6% and 42.4% for WoFi, WoFi-brief and ACEIIINaming, respectively. In the validation regression model including WoFi the mean misclassification error was 33%, while in those including WoFi-brief and ACEIIINaming it was 31% and 34%, respectively. Conclusions WoFi and WoFi-brief are more effective in detecting MildND and MajorND due to AD than ACEIIINaming

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765CP measurements, the majority of which were measured using 12 to 24h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20m) ranged from 0.01 to 8398”molCm−3d−1 (with a geometric mean of 16.1”molCm−3d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1% surface irradiance) ranged from  < 0.1 to 6mmolCm−2d−1 (geometric mean 1.19mmolCm−2d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20 m) ranged from 0.01 to 8398 ”mol C m−3 d−1 (with a geometric mean of 16.1 ”mol C m−3 d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1 % surface irradiance) ranged from  < 0.1 to 6 mmol C m−2 d−1 (geometric mean 1.19 mmol C m−2 d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182

    A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia

    Get PDF
    Background Childhood acute lymphoblastic leukaemia (ALL) may be the result of a rare response to common infection(s) acquired by personal contact with infected individuals. A meta-analysis was conducted to examine the relationship between day-care attendance and risk of childhood ALL, specifically to address whether early-life exposure to infection is protective against ALL

    Burn injuries related to motorcycle exhaust pipes: a study in Greece

    No full text
    Purpose: To identify measures that should reduce the incidence of burn injuries resulting from motorcycle exhaust pipes through epidemiological analysis of such injuries. Basic procedures: During a 5-year period, 251 persons who suffered burn injuries related to motorcycle exhaust pipes have contacted four major hospitals belonging to the Emergency Department Injury Surveillance System (EDISS) operating since 1996 in Greece. These burn injuries were studied in relation to person, environment and vehicle characteristics. Main findings: The estimated countrywide incidence of burns from motorcycle exhaust pipes was 17 per 100,000 person-years (208 per 100,000 motorcycle-years). The incidence was two times higher for children than for older persons and among the latter it was 60% higher among females than among males. Most of burn injuries (70.5%) concerned motorcycle passengers, mainly when getting on or off motorcycle, with peak incidence during summer. The most frequent location of burn wounds was below the knee and particularly the right leg It was estimated that the risk of motorcycle exhaust pipe burns when wearing shorts could be reduced by 46% through wearing long pants. Among the victims 65.3% experienced second degree burns. Principal conclusions: Motorcycle exhaust burns could be substantially reduced by systematically wearing long pants, by incorporating in the design of motorcycles external thermo resistant shields with adequate distance to the exhaust pipe, and by avoiding riding with children on motorcycles. (c) 2004 Elsevier Ltd and ISBI. All rights reserved
    corecore