159 research outputs found

    Description statistique de la surface océanique et mesures conjointes micro-ondes (une analyse cohérente)

    Get PDF
    De plus en plus de données satellitales ou aéroportées acquises au dessus de la surface de la mer sont disponibles notamment dans la gamme micro-ondes. Pour interpréter correctement ces données, il est nécessaire de disposer d'une part d'un modèle de diffusion qui soit capable de prendre en compte l'aspect multi-échelles de la surface de mer et d'autre part une bonne représentation spectrale de la surface de mer. Ces dernières années, plusieurs modèles de diffusion électromagnétiques unifiés (capables de prendre en compte la diffusion électromagnétique pour les petites et grandes vagues) ont été développés sous statistiques gaussiennes de la surface de mer. Cependant, ces modèles sont insuffisants pour interpréter les observations lorsque différents jeux de données (multi-bande et multi-incidence) sont confrontés. Le plus de cette thèse est de progresser dans une modélisation cohérente de ces données radar.La première étape est d'incorporer les aspects non-gaussiens de la surface de mer, connus pour influer significativement sur la section efficace de rétrodiffusion (SER). Cela est réalisé dans le cadre du modèle électromagnétique "Weighted Curvature Approximation (WCA) en introduisant le kurtosis des pentes et en se limitant à la SER omnidirectionnelle et à la polarisation verticale.Ces corrections permettent une meilleure modélisation de la section efficace radar mais ne sont pas suffisantes pour obtenir un accord avec les données dans toutes les configurations (bande, incidence, vent). Cela suggère une amélioration nécessaire du spectre des vagues courtes, qui fait l'objet de la deuxième partie de ces travaux de recherche.Un nouveau spectre omnidirectionnel est calculé afin d'obtenir une meilleure modélisation de la SER omnidirectionnelle en polarisation verticale tout en respectant des contraintes a priori sur les pentes mesurées par des techniques optiques. Ce spectre s'avère assez semblable au spectre unifié d'Elfouhaily, avec quelques différences notables cependant dans la gamme des échelles décimétriques.More and more micro-wave data are available from spatial and airborne measurements over sea surface. An accurate backscattering model which is capable of taking the multi-scale aspect of the sea surface into account, is required to model correctly the data as well as a precise sea spectrum. Several unified backscattering models have been developed in recent years under Gaussian statistics. However, these models are not able to give a correct modelization of the backscattered signal when different data sets are studied together. One of the objectives of this study is to improve the modelization of the backscattered signal to get better agreement with the data.The first step of this study is to include non Gaussian statistics into backscattering model as it is well known they have a significant impact on the normalized radar cross section (NRCS). Then, a non Gaussian version of the Weighted Curvature Approximation was developed taking the kurtosis of slopes into account. This work was based only upon vertical polarization.It is then shown that the corrections allow a better agreement with the data but they are not sufficient to get a good estimation of the NRCS for all incidences and electromagnetic frequencies. This induces the hypothesis of a modification of the short wave sea spectrum.Then, a new parametrisation of the omnidirectional sea spectrum is suggested to get a better agreement with the multiband data sets and is based on the spectrum developed by Elfouhaily et al. The new omnidirectional short wave sea spectrum is quite alike the Elfouhaily s spectrum with some noticeable differences for the decimetric scales.TOULON-Bibliotheque electronique (830629901) / SudocSudocFranceF

    Dual ovarian stimulation is a new viable option for enhancing the oocyte yield when the time for assisted reproductive technnology is limited

    Get PDF
    Abstract Ovarian stimulation improves assisted reproductive technology outcome by increasing the number of oocytes available for insemination and in-vitro handling. A recent Duplex protocol features a dual stimulation, with the second stimulation started immediately after the first oocyte retrieval. Remarkably, the Duplex protocol is unexpectadly well tolerated by women and provides twice as many oocytes and embryos as a regular antagonist protocol in less than 30 days. Ovarian stimulation was designed for improving assisted reproductive technology outcome by providing more than one oocyte to inseminate. Logically, the ovarian stimulation protocols used in assisted reproductive technology aim to modify the hormonal environment of the follicular phase to fool the natural mechanisms of single follicular dominance that normally exist in women. The therapeutic objective was to prevent the decrease in circulating FSH occurring in the mid-follicular phase, which is precisely responsible for single follicular dominance. Practically, this is achieved by enhancing the endogenous production of FSH, using clomiphene citrate or aromatase inhibitors, or by providing exogenous FSH and human menopausal gonadtotrophin. Today, 3 decades later, ovarian stimulation remains the single most effective measure ever taken for improving assisted reproductive technology outcome. The time constraints associated with emergency fertility preservation before starting oncology treatments has led to shorter ovarian stimulation protocols being used. This was notably achieved by starting stimulation at any time in the menstrual cycle (the 'random-start' protocols) rather than precisely in the early follicular phase or after down regulation The only unknown was whether the random start of stimulation might alter the size of the oocyte crop, its functionality (fertilization rates), or both. These fears were rapidly dismissed, as the oocyte yields of the 'random-start&apos

    Measuring ocean surface velocities with the KuROS and KaRADOC airborne near-nadir Doppler radars: a multi-scale analysis in preparation of the SKIM mission, Submitted to Ocean SCience, July 2019

    Get PDF
    Surface currents are poorly known over most of the oceans. Satellite-borne Doppler Waves and Current Scatterom-eters (DWCS) can be used to fill this observation gap. The Sea surface KInematics Multiscale (SKIM) proposal, is the first satellite concept built on a DWCS design at near-nadir angles, and now one of the two candidates to become the 9th mission of the European Space Agency Earth Explorer program. As part of the detailed design and feasibility studies (phase A) funded by ESA, airborne measurements were carried out with both a Ku-Band and a Ka-Band Doppler radars looking at the sea surface at 5 near nadir-incidence in a real-aperture mode, i.e. in a geometry and mode similar to that of SKIM. The airborne radar KuROS was deployed to provide simultaneous measurements of the radar backscatter and Doppler velocity, in a side-looking configuration , with an horizontal resolution of about 5 to 10 m along the line of sight and integrated in the perpendicular direction over the real-aperture 3-dB footprint diameter (about 580 m). The KaRADOC system has a much narrower beam, with a circular footprint only 45 m in diameter. 10 The experiment took place in November 2018 off the French Atlantic coast, with sea states representative of the open ocean and a well known tide-dominated current regime. The data set is analyzed to explore the contribution of non-geophysical velocities to the measurement and how the geophysical part of the measured velocity combines wave-resolved and wave-averaged scales. We find that the measured Doppler velocity contains a characteristic wave phase speed, called here C 0 that is analogous to the Bragg phase speed of coastal High Frequency radars that use a grazing measurement geometry, with little 15 variations ∆ C associated to changes in sea state. The Ka-band measurements at an incidence of 12 • are 10% lower than the theoretical estimate C 0 2.4 m/s for typical oceanic conditions defined by a wind speed of 7 m/s and a significant wave height of 2 m. For Ku-band the measured data is 1 https://doi. 30% lower than the theoretical estimate 2.8 m/s. ∆ C is of the order of 0.2 m/s for a 1 m change in wave height, and cannot be confused with a 1 m/s change in tidal current. The actual measurement of the current velocity from an aircraft at 4 to 18 • incidence angle is, however, made difficult by uncertainties on the measurement geometry, which are much reduced in satellite measurements

    ENDOCELL-Seud : a Delphi protocol to harmonise methods in endometrial cell culturing

    Get PDF
    culturing of endometrial cells obtained from the uterine mucosa or ectopic sites is used to study molecular and cellular signalling relevant to physiologic and pathologic reproductive conditions. However, the lack of consensus on standard operating procedures for deriving, characterising and maintaining primary cells in two- or three-dimensional cultures from eutopic or ectopic endometrium may be hindering progress in this area of research. Guidance for unbiased in vitro research methodologies in the field of reproductive science remains essential to increase confidence in the reliability of in vitro models. We present herein the protocol for a Delphi process to develop a consensus on in vitro methodologies using endometrial cells (ENDOCELL-Seud Project). A steering committee composed of leading scientists will select critical methodologies, topics and items that need to be harmonised and that will be included in a survey. An enlarged panel of experts (ENDOCELL-Seud Working Group) will be invited to participate in the survey and provide their ratings to the items to be harmonised. According to Delphi, an iterative investigation method will be adopted. Recommended measures will be finalised by the steering committee. The study received full ethical approval from the Ethical Committee of the Maastricht University (ref. FHML-REC/2021/103). The study findings will be available in both peer-reviewed articles and will also be disseminated to appropriate audiences at relevant conferences

    SKIM, a candidate satellite mission exploring global ocean currents and waves

    Get PDF
    The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a state-of-the-art nadir beam comparable to the Poseidon-4 instrument on Sentinel 6. The well proven Doppler pulse-pair technique will give a surface drift velocity representative of the top meter of the ocean, after subtracting a large wave-induced contribution. Horizontal velocity components will be obtained with an accuracy better than 7 cm/s for horizontal wavelengths larger than 80 km and time resolutions larger than 15 days, with a mean revisit time of 4 days for of 99% of the global oceans. This will provide unique and innovative measurements that will further our understanding of the transports in the upper ocean layer, permanently distributing heat, carbon, plankton, and plastics. SKIM will also benefit from co-located measurements of water vapor, rain rate, sea ice concentration, and wind vectors provided by the European operational satellite MetOp-SG(B), allowing many joint analyses. SKIM is one of the two candidate satellite missions under development for ESA Earth Explorer 9. The other candidate is the Far infrared Radiation Understanding and Monitoring (FORUM). The final selection will be announced by September 2019, for a launch in the coming decade

    Глибокий инфильтрирующий ендометріоз: діагностика та терапевтичні страт

    No full text
    Наружный генитальный эндометриоз включает в себя несколько клинических форм: поверхностный эндометриоз, эндометриодные кисты яичников (эндометриомы) и глубокий инфильтрирующий эндометриозЗовнішній генітальний ендометріоз включає в себе кілька клінічних форм: поверхневий ендометріоз, ендометріодной кісти яєчників (ендометріоми) і глибокий инфильтрирующий ендометріо

    Apport de l'imagerie par résonnance magnétique (IRM) dans le diagnostic de l'endométriose de la cloison recto-vaginale

    No full text
    PARIS5-BU Méd.Cochin (751142101) / SudocPARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF

    Endométriose abdominopelvienne profonde (distribution lésionnelle et implications physiopathologiques)

    No full text
    PARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF
    corecore