4,127 research outputs found

    The Compositional Structure of the Asteroid Belt

    Full text link
    The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from "What was the original compositional gradient of the Asteroid Belt?" to "What was the original compositional gradient of small bodies across the entire Solar System?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of asteroid compositions seen in the Main Belt today. This chapter also reviews the major outstanding questions relating to asteroid compositions and distributions and summarizes the progress and current state of understanding of these questions to form the big picture of the formation and evolution of asteroids in the Main Belt. Finally, we briefly review the relevance of asteroids and their compositions in their greater context within our Solar System and beyond.Comment: Accepted chapter in Asteroids IV in the Space Science Series to be published Fall 201

    Fact: Many SCUBA galaxies harbour AGNs

    Full text link
    Deep SCUBA surveys have uncovered a large population of ultra-luminous galaxies at z>1. These sources are often assumed to be starburst galaxies, but there is growing evidence that a substantial fraction host an AGN (i.e., an accreting super-massive black hole). We present here possibly the strongest evidence for this viewpoint to date: the combination of ultra-deep X-ray observations (the 2 Ms Chandra Deep Field-North) and deep optical spectroscopic data. We argue that upward of 38% of bright (f850um>=5mJy) SCUBA galaxies host an AGN, a fraction of which are obscured QSOs (i.e., L_X>3x10^{44} erg/s). However, using evidence from a variety of analyses, we argue that in almost all cases the AGNs are not bolometrically important (i.e., <20%). Thus, star formation appears to dominate their bolometric output. A substantial fraction of bright SCUBA galaxies show evidence for binary AGN activity. Since these systems appear to be interacting and merging at optical/near-IR wavelengths, their super-massive black holes will eventually coalesce.Comment: Invited contribution - 10 pages, 4 figures, to appear in the Proceedings of the ESO/USM/MPE Workshop on "Multiwavelength Mapping of Galaxy Formation and Evolution", eds. R. Bender and A. Renzin

    High Sensitivity Array Observations of the z=1.87 Sub-Millimeter Galaxy GOODS 850-3

    Full text link
    We present sensitive phase-referenced VLBI results on the radio continuum emission from the z=1.87 luminous submillimeter galaxy (SMG) GOODS 850-3. The observations were carried out at 1.4 GHz using the High Sensitivity Array (HSA). Our sensitive tapered VLBI image of GOODS 850-3 at 0.47 x 0.34 arcsec (3.9 x 2.9 kpc) resolution shows a marginally resolved continuum structure with a peak flux density of 148 \pm 38 uJy/beam, and a total flux density of 168 \pm 73 uJy, consistent with previous VLA and MERLIN measurements. The derived intrinsic brightness temperature is > 5 \pm 2 x 10^3 K. The radio continuum position of this galaxy coincides with a bright and extended near-infrared source that nearly disappears in the deep HST optical image, indicating a dusty source of nearly 9 kpc in diameter. No continuum emission is detected at the full VLBI resolution (13.2 x 7.2 mas, 111 x 61 pc), with a 4-sigma point source upper limit of 26 uJy/beam, or an upper limit to the intrinsic brightness temperature of 4.7 x 10^5 K. The extent of the observed continuum source at 1.4 GHz and the derived brightness temperature limits are consistent with the radio emission (and thus presumably the far-infrared emission) being powered by a major starburst in GOODS 850-3, with a star formation rate of ~2500 M_sun/yr. Moreover, the absence of any continuum emission at the full resolution of the VLBI observations indicates the lack of a compact radio AGN source in this z=1.87 SMG.Comment: 19 pages, 4 figures, accepted for publication in A

    Leadership in the British civil service: an interpretation

    Get PDF
    This article is essentially a polemic. The argument is that when politicians and officials now talk of ‘leadership’ in the British civil service they do not use that word in the way in which it was previously used. In the past leading civil servants, acting in partnership with ministers and within constitutional constraints, exercised leadership in the sense of setting example, inspiring confidence and encouraging loyalty. The loosening of traditional constitutional patterns, the marginalization of senior officials in the policy process and the emergence of business methods as the preferred model for public ­administration have led to a political and administrative environment in which leadership in the British civil service is now about encouraging patterns of behaviour which fit in with these changes. Leadership skills are now about ‘delivery’; they are not about motivation. It is time for politicians, officials and scholars to be open about this

    The inverse-Compton ghost HDF 130 and the giant radio galaxy 6C 0905+3955: matching an analytic model for double radio source evolution

    Full text link
    We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flux density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be ÎłâˆŒ103\gamma\sim10^3 for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of ÎłâˆŒ104\gamma\sim10^4 in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is γ≳103\gamma\gtrsim 10^3, just slightly above the particles required for X-ray emission.Comment: 9 pages, 3 figure

    The Comoving Infrared Luminosity Density: Domination of Cold Galaxies across 0<z<1

    Get PDF
    In this paper we examine the contribution of galaxies with different infrared (IR) spectral energy distributions (SEDs) to the comoving infrared luminosity density, a proxy for the comoving star formation rate (SFR) density. We characterise galaxies as having either a cold or hot IR SED depending upon whether the rest-frame wavelength of their peak IR energy output is above or below 90um. Our work is based on a far-IR selected sample both in the local Universe and at high redshift, the former consisting of IRAS 60um-selected galaxies at z<0.07 and the latter of Spitzer 70um selected galaxies across 0.1<z<1. We find that the total IR luminosity densities for each redshift/luminosity bin agree well with results derived from other deep mid/far-IR surveys. At z<0.07 we observe the previously known results: that moderate luminosity galaxies (L_IR<10^11 Lsun) dominate the total luminosity density and that the fraction of cold galaxies decreases with increasing luminosity, becoming negligible at the highest luminosities. Conversely, above z=0.1 we find that luminous IR galaxies (L_IR>10^11 Lsun), the majority of which are cold, dominate the IR luminosity density. We therefore infer that cold galaxies dominate the IR luminosity density across the whole 0<z<1 range, hence appear to be the main driver behind the increase in SFR density up to z~1 whereas local luminous galaxies are not, on the whole, representative of the high redshift population.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    A population of z> 2 far-infrared Herschel-spire-selected starbursts

    Get PDF
    We present spectroscopic observations for a sample of 36 Herschel-SPIRE 250-500um selected galaxies (HSGs) at 2<z<5 from the Herschel Multi-tiered Extragalactic Survey (HerMES). Redshifts are confirmed as part of a large redshift survey of Herschel-SPIRE-selected sources covering ~0.93deg^2 in six extragalactic legacy fields. Observations were taken with the Keck I Low Resolution Imaging Spectrometer (LRIS) and the Keck II DEep Imaging Multi-Object Spectrograph (DEIMOS). Precise astrometry, needed for spectroscopic follow-up, is determined by identification of counterparts at 24um or 1.4GHz using a cross-identification likelihood matching method. Individual source luminosities range from log(L_IR/Lsun)=12.5-13.6 (corresponding to star formation rates 500-9000Msun/yr, assuming a Salpeter IMF), constituting some of the most intrinsically luminous, distant infrared galaxies yet discovered. We present both individual and composite rest-frame ultraviolet spectra and infrared spectral energy distributions (SEDs). The selection of these HSGs is reproducible and well characterized across large areas of sky in contrast to most z>2 HyLIRGs in the literature which are detected serendipitously or via tailored surveys searching only for high-z HyLIRGs; therefore, we can place lower limits on the contribution of HSGs to the cosmic star formation rate density at (7+-2)x10^(-3)Msun/yr h^3Mpc^(-3) at z~2.5, which is >10% of the estimated total star formation rate density (SFRD) of the Universe from optical surveys. The contribution at z~4 has a lower limit of 3x10^(-3)Msun/yr h^3 Mpc^(-3), ~>20% of the estimated total SFRD. This highlights the importance of extremely infrared-luminous galaxies with high star formation rates to the build-up of stellar mass, even at the earliest epochs.Comment: 25 pages, 10 figures; ApJ accepte
    • 

    corecore