33 research outputs found

    Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy

    Get PDF
    Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011–2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m3 s−1 to 79 (110) m3 s−1. The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes

    Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts Lake, Central Kamchatka, Russia

    Get PDF
    © 2014 Elsevier B.V. Especially in combination with other proxies, the oxygen isotope composition of diatom silica (δ18Odiatom) from lake sediments is useful for interpreting past climate conditions. This paper presents the first oxygen isotope data of fossil diatoms from Kamchatka, Russia, derived from sediment cores from Two-Yurts Lake (TYL). For reconstructing Late Holocene climate change, palaeolimnological investigations also included diatom, pollen and chironomid analysis. The most recent diatom sample (δ18Odiatom=+23.3‰) corresponds well with the present day isotopic composition of the TYL water (mean δ18O=-14.8‰) displaying a reasonable isotope fractionation in the system silica-water. Nonetheless, the TYL δ18Odiatom record is mainly controlled by changes in the isotopic composition of the lake water. TYL is considered as a dynamic system triggered by differential environmental changes closely linked with lake-internal hydrological factors. The diatom silica isotope record displays large variations in δ18Odiatom from +27.3‰ to +23.3‰ from about ~4.5kyr BP until today. A continuous depletion in δ18Odiatom of 4.0‰ is observed in the past 4.5kyr, which is in good accordance with other hemispheric environmental changes (i.e. a summer insolation-driven Mid- to Late Holocene cooling). The overall cooling trend is superimposed by regional hydrological and atmospheric-oceanic changes. These are related to the interplay between Siberian High and Aleutian Low as well as to the ice dynamics in the Sea of Okhotsk. Additionally, combined δ18Odiatom and chironomid interpretations provide new information on changes related to meltwater input to lakes. Hence, this diatom isotope study provides further insight into hydrology and climate dynamics of this remote, rarely investigated area

    Oxygen isotope composition of diatoms from sediments of Lake Kotokel (Buryatia).

    Get PDF
    This is a summary of new oxygen isotope data for diatoms from Lake Kotokel sediments, with implications for responses of the lake system and its environment to global change over the past 46 kyr. Fossil diatoms in all samples are free from visible contamination signatures and contain no more than 2.5% Al2O3, which ensures reliable reconstructions. The δ18O values in diatoms vary between +23.7 and +31.2‰ over the record. The results mainly represent diatom assemblages of summer blooming periods, except for the time span between 36 and 32 kyr, when the isotopic signal rather records a shift from summer to spring blooming conditions. Possible water temperature changes only partly explain the changes in the isotopic record. The observed isotopic patterns are produced mainly by isotope changes in lake water in response to variations in air temperature, hydrology, and atmospheric circulation in the region. During Marine Isotope Stage (MIS) 2 (Last Glacial maximum), high δ18Odiatom resulted from rapid evaporation and low fluvial inputs. The high δ18O values of about +29 to +30‰ during the first half of MIS 1 (Holocene interglacial) suggest an increased share of summer rainfalls associated with southern/southeastern air transport. The δ18O decrease to +24‰ during the second half of MIS 1 is due to the overall hemispheric cooling and increased moisture supply to the area by the Atlantic transport. The record of Lake Kotokel sediments provides an example of complex interplay among several climatic controls of δ18Odiatom in the Late Pleistocene and the Holocene

    A global compilation of diatom silica oxygen isotope records from lake sediment - trends and implications for climate reconstruction

    Get PDF
    \ua9 Copyright: Oxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial-interglacial cycles. The best coverage in number of records (NCombining double low line37) and data points (NCombining double low line2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times <100 years. For mid- to high-latitude (>45\ub0N) lakes, we find common δ18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions

    A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Oxygen isotopes in biogenic silica (δ 18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ 18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ 18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial-interglacial cycles. The best coverage in number of records (NCombining double low line37) and data points (NCombining double low line2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times 45°N) lakes, we find common δ 18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions.Peer reviewe

    Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia – A review

    Get PDF
    © 2016 Elsevier LtdLake El'gygytgyn in Far East Russia is a 3.6 Myr old impact crater lake. Located in an area that has never been affected by Cenozoic glaciations nor desiccation, the unique sediment record of the lake represents the longest continuous sediment archive of the terrestrial Arctic. The surrounding crater is the only impact structure on Earth developed in mostly acid volcanic rocks. Recent studies on the impactite, permafrost, and sediment sequences recovered within the framework of the ICDP “El'gygytgyn Drilling Project” and multiple pre-site surveys yielded new insight into the bedrock origin and cratering processes as well as permafrost dynamics and the climate and environmental history of the terrestrial Arctic back to the mid-Pliocene. Results from the impact rock section recovered during the deep drilling clearly confirm the impact genesis of the El'gygytgyn crater, but indicate an only very reduced fallback impactite sequence without larger coherent melt bodies. Isotope and element data of impact melt samples indicate a F-type asteroid of mixed composition or an ordinary chondrite as the likely impactor. The impact event caused a long-lasting hydrothermal activity in the crater that is assumed to have persisted for c. 300 kyr. Geochemical and microbial analyses of the permafrost core indicate a subaquatic formation of the lower part during lake-level highstand, but a subaerial genesis of the upper part after a lake-level drop after the Allerød. The isotope signal and ion compositions of ground ice is overprinted by several thaw-freeze cycles due to variations in the talik underneath the lake. Modeling results suggest a modern permafrost thickness in the crater of c. 340 m, and further confirm a pervasive character of the talik below Lake El'gygytgyn. The lake sediment sequences shed new leight into the Pliocene and Pleistocene climate and environmental evolution of the Arctic. During the mid-Pliocene, significantly warmer and wetter climatic conditions in western Beringia than today enabled dense boreal forests to grow around Lake El'gygytgyn and, in combination with a higher nutrient flux into the lake, promoted primary production. The exceptional warmth during the mid-Pliocene is in accordance with other marine and terrestrial records from the Arctic and indicates a period of enhanced “Arctic amplification”. The favourable conditions during the mid-Pliocene were repeatedly interrupted by climate deteriorations, e.g., during Marine Isotope Stage (MIS) M2, when pollen data and sediment proxies indicate a major cooling and the onset of local permafrost around the lake. A gradual vegetation change after c. 3.0 Ma points to the onset of a long-term cooling trend during the Late Pliocene that culminated in major temperature drops, first during MIS G6, and later during MIS 104. These cold events coincide with the onset of an intensified Northern Hemisphere (NH) glaciation and the largest extent of the Cordilleran Ice Sheet, respectively. After the Pliocene/Pleistocene transition, local vegetation and primary production in Lake El'gygtygyn experienced a major change from relatively uniform conditions to a high-amplitude glacial-to-interglacial cyclicity that fluctuated on a dominant 41 kyr obliquity band, but changed to a 100 kyr eccentricity dominance during the Middle Pleistocene transition (MPT) at c. 1.2–0.6 Ma. Periods of exceptional warming in the Pleistocene record of Lake El'gygytgyn with dense boreal forests around and peaks of primary production in the lake are assigned to so-called “super-interglacial” periods. The occurrence of these super-interglacials well corresponds to collapses of the West Antarctic Ice Sheet (WAIS) recorded in ice-free periods in the ANDRILL core, which suggests strong intrahemispheric teleconnections presumably driven by changes in the thermocline ocean circulation

    Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts Lake, Central Kamchatka, Russia

    Get PDF
    © 2014 Elsevier B.V. Especially in combination with other proxies, the oxygen isotope composition of diatom silica (δ18Odiatom) from lake sediments is useful for interpreting past climate conditions. This paper presents the first oxygen isotope data of fossil diatoms from Kamchatka, Russia, derived from sediment cores from Two-Yurts Lake (TYL). For reconstructing Late Holocene climate change, palaeolimnological investigations also included diatom, pollen and chironomid analysis. The most recent diatom sample (δ18Odiatom=+23.3‰) corresponds well with the present day isotopic composition of the TYL water (mean δ18O=-14.8‰) displaying a reasonable isotope fractionation in the system silica-water. Nonetheless, the TYL δ18Odiatom record is mainly controlled by changes in the isotopic composition of the lake water. TYL is considered as a dynamic system triggered by differential environmental changes closely linked with lake-internal hydrological factors. The diatom silica isotope record displays large variations in δ18Odiatom from +27.3‰ to +23.3‰ from about ~4.5kyr BP until today. A continuous depletion in δ18Odiatom of 4.0‰ is observed in the past 4.5kyr, which is in good accordance with other hemispheric environmental changes (i.e. a summer insolation-driven Mid- to Late Holocene cooling). The overall cooling trend is superimposed by regional hydrological and atmospheric-oceanic changes. These are related to the interplay between Siberian High and Aleutian Low as well as to the ice dynamics in the Sea of Okhotsk. Additionally, combined δ18Odiatom and chironomid interpretations provide new information on changes related to meltwater input to lakes. Hence, this diatom isotope study provides further insight into hydrology and climate dynamics of this remote, rarely investigated area

    Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts Lake, Central Kamchatka, Russia

    No full text
    © 2014 Elsevier B.V. Especially in combination with other proxies, the oxygen isotope composition of diatom silica (δ18Odiatom) from lake sediments is useful for interpreting past climate conditions. This paper presents the first oxygen isotope data of fossil diatoms from Kamchatka, Russia, derived from sediment cores from Two-Yurts Lake (TYL). For reconstructing Late Holocene climate change, palaeolimnological investigations also included diatom, pollen and chironomid analysis. The most recent diatom sample (δ18Odiatom=+23.3‰) corresponds well with the present day isotopic composition of the TYL water (mean δ18O=-14.8‰) displaying a reasonable isotope fractionation in the system silica-water. Nonetheless, the TYL δ18Odiatom record is mainly controlled by changes in the isotopic composition of the lake water. TYL is considered as a dynamic system triggered by differential environmental changes closely linked with lake-internal hydrological factors. The diatom silica isotope record displays large variations in δ18Odiatom from +27.3‰ to +23.3‰ from about ~4.5kyr BP until today. A continuous depletion in δ18Odiatom of 4.0‰ is observed in the past 4.5kyr, which is in good accordance with other hemispheric environmental changes (i.e. a summer insolation-driven Mid- to Late Holocene cooling). The overall cooling trend is superimposed by regional hydrological and atmospheric-oceanic changes. These are related to the interplay between Siberian High and Aleutian Low as well as to the ice dynamics in the Sea of Okhotsk. Additionally, combined δ18Odiatom and chironomid interpretations provide new information on changes related to meltwater input to lakes. Hence, this diatom isotope study provides further insight into hydrology and climate dynamics of this remote, rarely investigated area

    A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic

    Get PDF
    In 2003 sediment core Lz1024 was drilled at Lake El'gygytgyn, far east Russian Arctic, in an area of the Northern Hemisphere which has not been glaciated for the last 3.6 Ma. Biogenic silica was used for analysing the oxygen isotope composition (delta O-18(diatom)) in the upper 13m long section dating back about 250 ka with samples dominated by one taxa in the < 10 mu m fraction (Cyclotella ocellata). Downcore variations in delta O-18 values show that glacial-interglacial cycles are present throughout the core and delta O-18(diatom)-values are mainly controlled by delta O-18(precipitation). Changes reflect the Holocene Thermal Maximum, the Last Glacial Maximum (LGM) and the interglacial periods corresponding to MIS 5.5 and MIS 7 with a peak-to-peak amplitude between LGM and MIS 5.5 of Delta O-18=5.3 parts per thousand. This corresponds to a mean annual air temperature difference of about 9 degrees C. Our record is the first continuous delta O-18(diatom) record from an Arctic lake sediment core directly responding to precipitation and dating back more than 250 ka and correlates well with the stacked marine delta(18)OLR04 (r = 0.58) and delta D EPICA Dome-C record (r = 0.69). With delta O-18 results indicating strong links to both marine and ice-core records, records from Lake El'gygytgyn can be used to further investigate the sensitivity of the Arctic climate to both past and future global climatic changes
    corecore