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Abstract. In 2003 sediment core Lz1024 was drilled at Lake
El’gygytgyn, far east Russian Arctic, in an area of the North-
ern Hemisphere which has not been glaciated for the last
3.6 Ma. Biogenic silica was used for analysing the oxygen
isotope composition (δ18Odiatom) in the upper 13 m long sec-
tion dating back about 250 ka with samples dominated by one
taxa in the< 10 µm fraction (Cyclotella ocellata). Downcore
variations inδ18O values show that glacial-interglacial cy-
cles are present throughout the core andδ18Odiatom-values
are mainly controlled byδ18Oprecipitation. Changes reflect the
Holocene Thermal Maximum, the Last Glacial Maximum
(LGM) and the interglacial periods corresponding to MIS
5.5 and MIS 7 with a peak-to-peak amplitude between LGM
and MIS 5.5 of118O = 5.3 ‰. This corresponds to a mean
annual air temperature difference of about 9◦C. Our record
is the first continuousδ18Odiatom record from an Arctic lake
sediment core directly responding to precipitation and dat-
ing back more than 250 ka and correlates well with the
stacked marineδ18O LR04 (r = 0.58) andδD EPICA Dome-
C record (r = 0.69). With δ18O results indicating strong
links to both marine and ice-core records, records from Lake
El’gygytgyn can be used to further investigate the sensitivity
of the Arctic climate to both past and future global climatic
changes.

1 Introduction

1.1 The Arctic as an important area for paleoclimate
reconstruction

The Arctic experienced the most rapid warming in the last
150 yr (Serreze et al., 2000; Kaufman et al., 2009; Bekryaev
et al., 2010) with a continuation of this temperature trend
above the global average projected for the 21st century
(Serreze et al., 2000; Anisimov et al., 2007). Especially in
climate-sensitive areas such as the Arctic (Serreze and Fran-
cis, 2006a, b; Miller et al., 2010; Serreze and Barry, 2011),
longer, continuous terrestrial records for paleo-climate re-
constructions are rare (Brigham-Grette et al., 2007; CCSP,
2009) due to the coverage of large areas by glaciers, e.g.
during the Last Glacial Maximum (LGM) (Dyke and Prest,
1987; Lehman et al., 1991; Thiede, 2004), which destroyed
sedimentary sequences in lakes especially in the western part
of Siberia (Svendsen et al., 1999; Hubberten et al., 2004).
The Beringia land bridge which connected Alaska (eastern
Beringia) and northeast Russia (western Beringia) was ex-
posed during the glacials (Hopkins, 1967; Hopkins et al.,
1982; Brigham-Grette, 2001) linked to a eustatic sea-level
drop due to growing ice caps. However, due to its dry cli-
mate the Eastern Arctic experienced only valley glaciation
(Glushkova, 2001) and the precipitation-controlled eastern
margin of the Eurasian Ice Sheet never extended to Eastern
Siberia (Svendsen et al., 2004; Melles et al., 2007).

Lake sediments are known as excellent archives for the
reconstruction of past climate and environmental changes
which may provide insights as to how regions may respond
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to future change. The longest lacustrine palaeoenvironmental
record in Siberia exists from Lake Baikal, reaching back to
35 Mio years before present (Tapponnier and Molnar, 1979).
However, Lake Baikal is located south of the Arctic cir-
cle with southern catchments having generally higherδ18O-
values due to lower proportion of snowmelt (e.g. Seal and
Shanks, 1998). Though the majority of precipitation to this
region comes via the westerlies (Kurita et al., 2004), the cli-
mate is increasingly influenced by south and southeast cy-
clones in July and August (Bezrukova et al., 2008; Kostrova
et al., 2012). In an attempt to obtain Quaternary lake records
from the terrestrial, far east Russian Arctic drilling cam-
paigns were conducted at Lake El’gygytgyn in an area of
the Northern Hemisphere which has not been glaciated dur-
ing at least the last five glacial/interglacial cycles and has the
potential to be an archive of continuous and undisturbed sed-
imentation (Brigham-Grette et al., 2007; Melles et al., 2007).

1.2 The importance ofδ18O(diatom) records

Oxygen isotope records from ice-cores (Greenland-Ice-Core-
Project members, 1993; Grootes et al., 1993; Petit et al.,
1999; EPICA members, 2004 and 2006) or carbonate or-
ganisms (Zachos et al., 2001; Lisiecki and Raymo, 2005)
are amongst the most important proxies for reconstruct-
ing paleoenvironmental conditions and paleoclimate. In re-
gions of high latitude where ice-records are not available or
where carbonates are absent, as is the case for Beringia and
Lake El’gygytgyn, the oxygen isotope composition from la-
custrine biogenic silica, i. e. diatoms, often represents the
best isotope proxy for reconstructing past climate changes
(Shemesh et al., 2001; Leng and Marshall, 2004). This is
similar for δ18O records from marine biogenic silica in re-
gions of the ocean floor void of carbonate (Shemesh et al.,
1992). By taking potential controls and effects into account,
the analysis of oxygen isotopes in lacustrine biogenic silica
provides one of the rare opportunities to gain a direct and
continuousδ18O signal from paleo-precipitation beyond the
LGM in the Eastern Arctic. This can then be compared with
other regional and globalδ18O records to better understand
the links between West Beringia and the wider global cli-
mate system. The preparation of the samples (e.g. Juillet-
Leclerc and Labeyrie, 1987; Shemesh et al., 1995; Morley
et al., 2004), contamination assessment (Lamb et al., 2007;
Brewer et al., 2008; Mackay et al., 2011; Swann and Pat-
wardhan, 2011) as well as the oxygen isotope analysis for
diatoms are often challenging and time-consuming (Leng
and Barker, 2006; Swann and Leng, 2009). Recently, im-
proved protocols have been developed for the purification
of small fractions and a more reliable contamination correc-
tion (Chapligin et al., 2012). In addition, a faster dehydration
and analytical technique has also been introduced (Chapli-
gin et al., 2010). However, when analysing 250 ka old ma-
terial, diagenetic changes pose a serious threat to the relia-
bility of δ18O-values from biogenic silica. Additionally, the

species-effect on isotope fractionation is still not well under-
stood for diatoms but this effect was not observed for the
prevailing diatom species in sub-surface samples (2 to 4 cm)
at Lake El’gygytgyn (Chapligin et al., 2012).

This study aims to analyse the upper 13 m sequence of a
sediment core from Lake El’gygytgyn and provide a con-
tinuous, 250 kaδ18O record from diatoms for the terrestrial
Eastern Arctic. Additionally, potential diagenetic changes
and their impact on the oxygen isotope composition are
addressed.

2 Materials and methods

2.1 Site description, material and age model

Lake El’gygytgyn is located in the far east Russian Arc-
tic (67◦30′ N, 172◦05′ E) at 492 m a.s.l. (Fig. 1a) inside
a crater structure formed by a meteorite impact circa
3.6 Ma ago (Layer, 2000). The lake is of circular shape,
about 12 km in diameter, 170 m deep, cold-monomictic and
ultra-oligotrophic (Nolan and Brigham-Grette, 2007). Fifty
streams drain into the lake, the Enmyvaam River is the only
outflow in the southeast of the lake and the total catchment
area is 293 km2 (Nolan and Brigham-Grette, 2007).

Several cores have been drilled in the last decade
(Fig. 1b), including the 16.5 m core Lz1024 drilled in 2003
(67◦30.13′ N; 172◦06.46′ E) examined in this study. A grav-
ity corer (UWITEC Corp., Austria) was used for the water-
sediment transition and changed to a percussion piston corer
further down the sediment (Melles et al., 2005). In total, 96
samples spread over the first 13 m were chosen for analy-
sis, covering the last three glacial-interglacial cycles. From
2 cm sections, sub-samples with average dry weight of 1.9 g
were taken. As the first test series of 10 samples distributed
equidistantly downcore did not provide enough material af-
ter purification, two subsequent samples were merged and
the average age and depth determined. The first age model
for core Lz1024 was proposed by Juschus et al. (2007), us-
ing isochronous sediment layers and susceptibility variations
to correlate core Lz1024 to the previously dated 13.5 m core
PG1351 with the final age model, and then revised after tun-
ing the magnetic susceptibility to the insolation at 70◦ N
(Nowaczyk et al., 2002, 2007). The core base of Lz1024
was dated to a maximum age of 350 ka (Frank et al., 2012;
age model for composite profile from ICDP Site 5011-1 in
Melles et al., 2012); the focus of this study is on the record
of the first 250 ka.

2.2 Methods

2.2.1 Preparation

Various steps are essential from coring to the final inter-
pretation of the oxygen isotope composition from biogenic
silica (overview in Fig. 2). One taxa dominates the diatom
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Fig. 1: (a) Geographical position of Lake El’gygytgyn and (b) drilling locations (Melles et al., 
2011) 
 

 
 
Fig. 2: Method outline from coring to final interpretation. 

Fig. 1. (a)Geographical position of Lake El’gygytgyn and(b) drilling locations (Melles et al., 2011).

assemblage at Lake El’gygytgyn in the investigated first
250 ka:Cyclotella ocellata(avg. size 5–10 µm, 95 to 100 %
relative abundance) with minor occurrences ofPliocaenicus
seczkinae(avg. size 20–35 µm, 0–5 %, relative abundance)
(Cremer et al., 2005; Cherapanova et al., 2007; Snyder et
al., 2012). For this reason, the normally analysed> 10 µm
fraction did not provide enough diatom material for oxy-
gen isotope analyses in most core sections. Consequently, in
an attempt to obtain an isotope record dominated by a sin-
gle taxa, the< 10 µm fraction was purified according to an
8-step method developed by Chapligin et al. (2012) which
is similar to the 4-step method (Morley et al., 2004). After
freeze-drying, the samples were treated with H2O2 (32 %)
and HCl (10 %) to remove organic matter and carbonates and
wet sieved into< 10 µm and> 10 µm fractions. Four multi-
ple heavy liquid separation (HLS) steps with varying den-
sities (from 2.25 to 2.15 g cm−3) were then applied using a
sodium polytungstate (SPT) solution before being exposed
to a mixture of HClO4 (65 %) and HNO3 (65 %) for remov-
ing any remaining micro-organics.

2.2.2 Species assessment

The diatom assemblage in the< 10 µm fraction of 40 purified
samples equally distributed throughout the core was assessed
by counting under light microscope (LM) (Chapligin et al.,
2012, based on Morley et al., 2004, and Swann et al., 2008).
Five random fields of view were selected along a transect in
the middle of the slide and at least 200 valves as well as frag-
ments were counted whenever possible. The biovolume was
calculated by defining average area-sizes (Chapligin et al.,
2012) for each species as it better reflects the actual propor-
tion of each taxa when analysing for oxygen isotopes than
using the number of valves.

Fig. 2.Method outline from coring to final interpretation.

2.2.3 FTIR analysis

The question of potential diagenetic changes and their im-
pact on the oxygen isotope composition in the amorphous
structure was addressed by performing diffuse reflectance
Fourier Transform Infrared Spectroscopy (FTIRS) at Umeå
University, Sweden. This method determines individual com-
pounds in biogenic silica by recording the different charac-
teristic vibration patterns (absorption peaks) of the chemi-
cal bonds present in the structure (siloxane bonds: Si-O-Si;
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silanol bonds: Si-OH; H2O) over a certain wavelength win-
dow (Schmidt et al., 2001; Gendron-Badou et al., 2003;
Moschen et al., 2006; Leng et al., 2009; Swann and Pat-
wardhan, 2011). A relative reduction in Si-OH groups com-
pared to the Si-O-Si groups indicates a diagenetic change by
a condensation reaction (Si-OH + HO-Si→ Si-O-Si + H2O)
typical for an alteration of amorphous silica by tempera-
ture and/or pressure towards a higher state of organisation.
An FTIR spectrometer (Bruker IFS 66v/S) equipped with a
diffuse reflectance accessory (Harrick Inc.) was used with
11 mg of sample material mixed with 500 mg KBr for the
analysis under vacuum (4 mbar) conditions (Vogel et al.,
2008; Rośen et al., 2010). Sixteen (16) purified diatom sam-
ples from different core depths (first sample at 0.09 m, last
sample at 12.35 m) were selected and scanned (64 scans per
sample) with measurements taken every 4 cm−1 for the spec-
tral region between 3750 and 400 cm−1.

All wavelength absorption peaks> 1500 cm−1 were re-
moved as these peaks are not related to biogenic silica
(Fröhlich, 1989) or linked to molecular vibrations of hydrox-
ide (-OH stretching). Focusing on wavelengths< 1500 cm−1

allows only the silica bonds from the diatom frustules to be
examined. Common peak centres for amorphous silica are
450 cm−1, 800 cm−1 and 1100 cm−1 for various modes of
siloxane bonds and 945 cm−1 for silanol bonds (Gendron-
Badou et al., 2003; Swann and Patwardhan, 2011). In our
study the data was baseline-corrected and normalised, so that
the area under each curve adds up to 100 %, with individual
peaks separated by applying a Gaussian peak fitting (Fig. 4a)
(Swann and Patwardhan, 2011) using the software Fytik, Ver-
sion 0.9.3 (http://fityk.nieto.pl/). Peak types were then as-
signed (Si-OH and Si-O-Si) and the percentages calculated
from the respective areas.

However, when using FTIR each Si-O-Si band has its
own “sensitivity”, so absolute unweighted calculations are
not suitable for comparing individual samples. Therefore, the
relative change in Si–OH bond determined by a single peak,
was calculated. The highest peak area (top sample at 0.09 m,
1.3 ka) was set at 100 % (using the size of the un-normalised
-Si–OH peak following peak fitting).

2.2.4 Isotope analysis

Oxygen isotope analysis was performed with a PDZ Eu-
ropa 2020 mass spectrometer (MS-2020; now supplied by
Sercon Ltd., UK) following the method of Chapligin et
al. (2010). Prior to isotope analyses, hydrous groups (H2O,
-OH) were removed from an initial sample weight of 1.5
to 2 mg using ramp degassing under inert gas flow condi-
tions (inert Gas Flow Dehydration = iGFD technique) in a
horizontal ceramic tube furnace flushed with helium (Chap-
ligin et al., 2010). The dehydrated sample was then reacted
by laser fluorination under BrF5 atmosphere to liberate O2
based on Sharp (1990). The oxygen was separated of by-
products and directed to the mass spectrometer for isotope

analysis. Every fifth sample was a biogenic working standard
to verify the quality of the analyses. For this, the biogenic
standard BFC (Leng et al., 2001; Leng and Sloane, 2008;
Chapligin et al., 2010) calibrated within an inter-laboratory
comparison was used (Chapligin et al., 2011). Withδ18O-
values of +29.0± 0.3 ‰, BFC is the closest diatom work-
ing standard to the Lake El’gygytgyn samples (δ18O-values
range between +19 and +26 ‰) available. Additionally, the
international quartz standard NBS28 (δ18O = +9.57 ‰; Hut,
1987; Gr̈oning et al., 2007) was measured. Long-term stan-
dard measurements ofδ18O-values in silica show standard
deviations of 1σ = 0.15 ‰ for quartz and 1σ ≤ 0.25 ‰ for
biogenic silica working standards such as BFC (Chapligin et
al., 2010). Replicate isotope analyses were performed for 49
samples from the core Lz1024, which show a mean standard
deviation of 0.13 ‰ (1σ , ranging between 0.00–0.41 ‰).

2.2.5 Contamination assessment and correction
technique

The measured oxygen isotope composition (δ18Omeasured)

was corrected (toδ18Ocorr) using geochemical mass-
balancing (Brewer et al., 2008; improved by Swann and
Leng, 2009; Chapligin et al., 2012).

δ18Ocorr = (δ18Omeasured− % cont. · δ18Ocont.)/% purity (1)

where the percentage of purity was 100 % subtracted by
the percentage of remaining contamination (% cont.). Deter-
mining % cont. by counting contamination particles/diatoms
under a light microscope underestimates this parameter in
the < 10 µm fraction due to the presence of small, dif-
fuse clay and silt particles (Chapligin et al., 2012). Thus,
% cont. was calculated by dividing the sample percentage of
Al2O3 by the Al2O3 percentage from a 100 % contamina-
tion end member according to Brewer et al. (2008), Swann
and Leng (2008) and Mackay et al. (2011). Chapligin et
al. (2012) tested different contamination assessment tech-
niques to Lake El’gygytgyn sub-surface samples and found
no significant difference between this method and calculating
% cont. by multiplying the sample’s Al2O3 percentage with
a clay assemblage factor that depends on the Al2O3 percent-
age of the average clay types present in the core. Hence, the
Al2O3 percentage for each sample was analysed by Energy-
Dispersive X-ray Spectroscopy (EDS) (3–5 repetitions, di-
ameter of excited-area size: 100–120 µm) and the % cont.
and δ18Ocont. end-members determined from a heavy frac-
tion after the first heavy liquid separation containing no di-
atoms (verified under scanning-electron microscope (SEM)),
resulting in Al2O3<10µm = 16.6 % andδ18Ocont. = +6.5 ‰
(Chapligin et al., 2012).
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3 Results

3.1 Diatom assemblage

Five different types of diatoms and particles were counted
for 40 samples downcore (Cyclotella ocellata, Pliocaenicus
seczkinae, Surirella fragments, contamination particles and
other diatom species) with an average of 236± 57 counts.
The diatom assemblage in the analysed< 10 µm fraction was
almost mono-specific (Fig. 3, biovolume [%] withCyclotella
ocellataconstituting> 90 % of all diatom biovolume in 37
out of 40 samples, and 70–90 % in 3 samples). The usually
> 10 µm sized speciesPliocaenicus seczkinaeoccurs in the
< 10 µm fraction (smaller frustules) only in the first 70 cm
of the record (about 9 ka) with biovolume abundances of up
to 20 %. In the deeper core sections between 6 m and 10 m
depth,Surirella fragments and other species have biovolume
abundances of up to 15 %.

3.2 Diagenetic effects

In order to test the samples for diagenetic effects which could
potentially alterδ18O-values with time, FTIRS measure-
ments were performed. The determined absolute percentage
of Si-OH bonds ranges between 5.6 and 9.0 %. As absolute
unweighted calculations are not suitable for comparing indi-
vidual samples, the change in Si-OH bond percentages rel-
ative to the highest peak area (top sample at 0.09 m, 1.3 ka
set at 100 %) was calculated, resulting in maximum values
in the upper core section between 0–30 ka (average 88 %), a
local minimum at 90 ka (64 %) and relatively constant values
further downcore (average for the period between 90 ka and
230 ka = 68 %). A relative decrease of 2.9 % per 10 ka is ob-
served in the first 90 ka (total decrease of 26 %) with a cor-
relation between Si-OH percentage and age ofr2

= 0.63).
For the relatively constant part of the Si-OH percentage
record from 90 ka to 231 ka, only a weak correlation exists
(r2

= 0.30). These numbers are not absolute and should only
be used qualitatively to separate larger from smaller Si-OH
layers. However, different calculations by peak height ratio
(945 cm−1 (SiOH) vs. 800 cm−1 (inter-tetrahedral Si-O-Si
bending vibrations)) or peak area ratio (990–860 cm−1 vs.
860–750 cm−1) confirmed this trend.

3.3 Contamination assessment and correction

Out of 96 samples, 80 contained sufficient material af-
ter all purification steps for both oxygen isotope measure-
ments and contamination analysis (> 5 mg). Chapligin et
al. (2012) showed that the geochemical mass-balancing cor-
rection technique is reasonable for samples containing up
to 2.5 % Al2O3EDS or < 15 % contamination. From the 80
analysed samples, 76 samples had an average Al2O3 per-
centage of 0.94± 0.16 % (Fig. 3, SiO2 and Al2O3 [%],
118Ocorr-measured). For four samples the Al2O3 percentage
was> 2.5 % and for one more sample the Al2O3 percentage

of 2.3 % resulted in a highδ18O-value correction of> 2.5 ‰.
These samples were discarded from further interpretations.

Only a low correlation exists between the final mass of the
sample after purification and Al2O3 percentage (r2

= 0.14).
However, all samples above 2.5 % Al2O3 had final masses
below 10 mg, which indicates that in horizons with low bio-
genic productivity (BSi< 10 %) a purification resulting in
enough cleaned sample material can be rather difficult.

3.4 δ18Odiatom record

The δ18Ocorr-values (henceforth simplified again toδ18O)
throughout the 250 ka record range between +19.1 and
+24.4 ‰ with an average of +21.7 ‰ (Fig. 3). The first
sample (5 cm depth corresponding to 0.8 ka) shows a
δ18O-value of +21.4 ‰, which is in good agreement with
undated but younger sub-surface samples (Lz1032, 2–
4 cm, δ18O = +20.8 ‰) close to the Lz1024 drilling posi-
tion (Chapligin et al., 2012). An increase to peak values
of +23.1 ‰ (0.52 m depth, corresponding to 6.6 ka) and
+23.4 ‰ (0.64 m, 8.4 ka) with a single spike of +23.9 ‰
(1.18 m, 15.0 ka) is observed. This is followed downcore
by a significant decline to an absolute minimum inδ18O
of +19.1 ‰ at 1.61 m/23.1 ka. Theδ18O-values continu-
ously increase until +22.4 ‰ (1.98 m, 34.3 ka), with subse-
quent fluctuations within about 1.0 ‰ for the next 70 ka,
and prominent minima of +19.6 ‰ (3.36 m, 70.5 ka) and
+20.0 ‰ (4.80 m, 107.3 ka) and average maxima with peaks
of +23.3 ‰ (2.42 m, 54.6 ka) and +21.0 ‰ (∼ 4.5 m, ∼

100 ka).
Measurements reveal an increase for the next 20 ka with

a peak of +24.4 ‰ (5.85 m, 127.2 ka) before a progressive
decrease down to +20.7 ‰ (7.35 m, 162.2 ka). This peak at
5.85 m (127.2 ka) is the absolute maximum of the record.
Between 7.35 m and 9.56 m (162.2 ka and 187.6 ka), no fur-
ther measurements could be performed as two more samples
within this period did not provide sufficient material. The
δ18O-value of +20.1 ‰ at 9.56 m (187.6 ka) supports the de-
creasing trend. From the short-term minimum downcore a
rapid increase until 197.6 ka was observed, plateauing until
209.3 ka with an averageδ18O = +23.2 ‰. Further downcore,
a slight decline of 1.5 ‰ was detected until values increased
again to a maximum of +23.6 ‰ (244.0 ka).

4 Discussion

4.1 δ18O Isotope controls

4.1.1 Diagenetic alteration

Diagenetic effects could severely influence the oxygen iso-
tope composition on longer time scales by preferentially in-
corporating18O from exchangeable Si-OH bonds into the
Si-O-Si structure, resulting in higherδ18O-values (Bran-
driss et al., 1998; Schmidt et al., 2001; Moschen et al.,
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Fig. 3. (a) Uncorrected (grey) and corrected (black)δ18O record from the< 10 µm fraction. Highly contaminated samples (encircled) or
samples without correction data (open diamonds) were excluded.(b) A correction was performed according to Al2O3 percentages and the
difference between measured and correctedδ18O-values displayed.(c) SiO2 percentages and(d) Al2O3 percentage of the sample analysed
by EDS.(e) Five different categories (Contamination particles, different species) were counted for 40 samples and expressed in biovolume
[%].

2006). Despite the relative decrease of silanol bonds of
0.6 %/10 ka and a total of 20 % for the whole 250 ka record
(Fig. 4b; top sample: 9 cm, 1.4 ka, 100 %; deepest sample:
12.35 m, 231 ka, 76 %), no general trend in the oxygen iso-
tope composition of the samples (+0.2 ‰/100 ka,r2

= 0.03)
towards higherδ18O-values could be detected in the 250 ka
record (Fig. 3). A rapid signal alteration (early stage dia-
genesis, Moschen et al., 2006) during sedimentation cannot
be excluded. By this process, theδ18Odiatom-values would
then reflect the deeperδ18Olake water. However, for Lake
El’gygytgyn this is unlikely as the lake is well-mixed and
no significant differences inδ18Olake water in the water pro-
file can be observed (Chapligin et al., 2012). Hence, the
results support the theory from Moschen et al. (2006) that
any rapid signal alteration during sedimentation is followed
by only minor post-sedimentary diagenetic changes, which
are not detectable in theδ18O data. This makes the Lake
El’gygytgyn diatom record suitable for (further) downcore
δ18O analyses.

Fig. 4. Assessment of potential diagenetical changes.(a) gaussian
peak fitting and peak centres for all silica modes, the Si-OH bond
peak is located at about 945 cm−1. (b) FTIRS analysis of 16 sam-
ples downcore.

4.1.2 Lake temperature, blooming period andδ18Owater

Various environmental factors can influence theδ18O-values
of lacustrine, biogenic silica (Fig. 5). The lake temperature
in which the diatoms grow has an effect on the fractiona-
tion betweenδ18Owaterandδ18Odiatomof about−0.2 ‰◦C−1
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Fig. 5. δ18Odiatom controls in the lacustrine environment.
118Ouptakearrows mark direct fractionation mechanisms between

δ18Odiatomandδ18Olake waterwhile 118Owaterarrows indicate at-
mospheric or hydrological processes influencing theδ18Olake water
and thus, indirect mechanisms onδ18Odiatom. Small up pointing
arrows indicate an increase of the respective parameter.

(Brandriss et al., 1998; Moschen et al., 2005; Dodd and
Sharp, 2010; Dong and JingTai, 2010). Lake El’gygytgyn
lacks a true thermocline as in winter the lake is thermally
stratified, but only with a difference of 2.3◦C from the top
to bottom of the water column (0.7◦C at 3 m water depth,
3◦C at 170 m depth). As soon as the ice melt begins, the first
30 m are mixed (at 1.4◦C, beginning of June) and in mid-July
the lake is completely mixed with temperatures from July to
mid-October ranging between 2.2◦C to 3.8◦C (observations
from 2002, Nolan and Brigham-Grette, 2007). Diatoms are
phototrophic organisms and the major blooming period was
assessed by Cremer et al. (2005) from early spring (under-
ice) through open-water conditions until the re-establishment
of ice coverage in autumn, with the highest increase ofCy-
clotella ocellatain the first meters of the photic zone between
1 June and 20 July. Thus, due to this short major bloom-
ing period variations in lake temperature should not exceed
±1◦C, equal to water temperature-induced changes inδ18O-
values of±0.2 ‰, which is within the instruments error for
biogenic silica (1σ = 0.25 ‰, Chapligin et al., 2010). Chap-
ligin et al. (2012) has further shown that no significant iso-
topic differences exist in the water column throughout vari-
ous times of the year, so only minor effects from seasonality
are expected to be reflected inδ18Odiatomvalues. With a deep
photic zone of about 34 m (Dehnert and Juschus, 2008), good
mixing conditions and a location in the cold Arctic environ-
ment, no significant impact on theδ18Odiatom-values from

varying lake water temperature can be expected from differ-
ent ages, samples or from taxa blooming in different seasons.

4.1.3 Lake hydrology, ice-cover andδ18Op

Evaporation trends were not detected when analysing the
δ18O lake water profile at three different times of the year
(May, August, November; Chapligin et al., 2012). Despite
the fact that these observations account mainly for the re-
cent system, the reconstructed differences in lake level (ter-
races: +35–40 m, middle Pleistocene; +9–11 m, late Pleis-
tocene; +2–3 m, Holocene; Glushkova and Smirnov, 2007)
and subsequent differences in evaporation rates can poten-
tially change the hydrological conditions (i.e. the residence
time) and cause a shift inδ18Olake water. However, changes in
the extension of the photic zone should be considerably low
throughout time. Hence,δ18Odiatom is basically influenced
by δ18Olake water.

In a deep, well-mixed lake such as Lake El’gygytgyn
with little evaporation and a defined small catchment area,
δ18Olake water is mainly determined by the oxygen isotope
composition of precipitation (δ18Op). Precipitation is either
directly going into the lake or supplied via one of the small
streams (Chapligin et al., 2012; Wilkie et al., 2012).

The residence time is about 100 yr (Fedorov et al., 2012).
For the last 100 yr, the isotope mass balance model of the
lake (Wilkie et al., 2012) shows that this residence time
buffers short-term changes and reduces the amplitude in
δ18Olake water (Wilkie et al., 2012). However, the low sed-
imentation rate only allowed for sampling on a centennial
scale and for gaining averageδ18Odiatom values. Compared
to this sample-related time resolution and the relatively low
resolution from theδ18Odiatom record (74 samples/250 ka),
the residence time can have reduced the amplitude by “cut-
ting off local maxima or minima” of theδ18Odiatom record
to a certain extent but considerably less than in the 100 yr
model.

Modern lake water isotope composition ofδ18OAVG =

−19.8 ‰ (Chapligin et al., 2012) matches the oxygen iso-
tope composition of precipitation ranging between−14 and
−34 ‰ for snow samples of single winter events (mean
−23.2 ‰) and rainδ18O-values ranging from−15.9 ‰ to
−12.4 ‰ (mean−14.3 ‰) (Wilkie et al., 2012). Assum-
ing a winter to summer precipitation ratio of 60 % to 40 %
(Nolan and Brigham-Grette, 2007), the annual average of
δ18O-values would be−19.3 ‰. Streamδ18O-values ranged
from −24.2 ‰ to−16.7 ‰ (Wilkie et al., 2012).

Hence, the oxygen isotope composition of the diatom sam-
ples reflectsδ18Olake water, which is mainly controlled by
δ18Op (pathway via streams or directly on/into the lake). This
is in accordance with Swann et al. (2010).
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4.1.4 Air temperature, air mass source and
continentality

The δ18O precipitation signal could be affected by vary-
ing air mass sources, air temperature, and/or continental-
ity. According to Dansgaard (1964), the mean annual air
temperature (MAAT) at surface is directly related to the
mean annualδ18Op signal (shift of +0.7 ‰◦C−1; in high
latitudes/continental regions +0.6 ‰◦C−1, Rozanski et al.,
1993). Due to the relatively stable lake water temperatures
and the negligible effect from1Tlake, we assume the effect
of air temperature changes as predominant.

Nolan et al. (2012) identified modern synoptic weather
patterns and climate trends affecting air temperatures from
National Centers for Environmental Prediction (NCEP)
global reanalysis data. Strong Aleutian lows and strong high
pressure centres over the Arctic Ocean prevail in the winter,
bringing cold Arctic air and moisture from the East and North
to Lake El’gygytgyn. Summers are characterized by weak
low pressure systems over Siberia and broad high pressure
systems to the south and east providing warm continental air
and recycled moisture to the lake.

For this area and the lake system, the general warming or
cooling trends for air temperature are more important in con-
trast to changes in storm tracks being negligible (Nolan et al.,
2012). Furthermore, Nolan et al. (2012) suggest that these
weather patterns have been relatively stable with time and
are likely representative of this and other interglacial periods.
For Beringia, Mock et al. (1998) suggest the applicability of
modern synoptic climatology to paleoclimate reconstruction.

The modern day and interglacial mean annual air temper-
ature is−10.3◦C (Nolan and Brigham-Grette, 2007), while
mean annual air temperatures for glacials were assumed to
be about−25◦C using the coldest value from modern day
NCEP daily reanalysis (Swann et al., 2010). Using the Dans-
gaard relationship of +0.6 ‰◦C−1, this temperature differ-
ence of about 15◦C is equivalent to a long-term amplitude
in δ18Op by 9 ‰. This should be significantly higher when
using MIS 5e (i.e. MIS 5.5) interglacial temperatures instead
of modern day temperatures (Melles et al., 2012).

If only condensation temperature controlled this peak-to-
peak amplitude of118O = 5.3 ‰, this would correspond to a
mean annual air temperature change of about 9◦C between
LGM and MIS 5.5 interglacial (Dansgaard, 1964). This tem-
perature difference is in line with pollen-based reconstruc-
tions by Melles et al. (2012) who found a difference in mean
temperatures of the warmest month between LGM and MIS
5.5 of around 9◦C.

Potentially, the change in the isotope signal due to air tem-
peratures could be amplified by changes in continentality pat-
terns. Lower sea levels and extended sea-ice in glacial peri-
ods increase the continentality of the location and the effect
of the Rayleigh distillation, and thus, further decrease the
δ18Op. In contrast, there are three possibilities to explain a
reduced amplitude. (1) The different lake temperature (about

−0.2 ‰◦C−1) and air temperature (about +0.6 ‰◦C−1) fac-
tors cannot be mixed up and merged, as air temperature
varies between glacial and interglacials from−10.3◦C to
−25◦C while water temperatures at these latitudes in well
mixed lakes with a depth of 170 m must have been always
around 4◦C with only small variations (modern and in-
terglacial lake temperatures about 2–4◦C; see Sect. 4.1.1).
Hence, the effect from lake temperatures (e.g. potentially
higher lake temperatures during the MIS 5.5 interglacial or
the Greenland interstadial (1) would reduce theδ18Odiatom-
values, and thus, the amplitude slightly (e.g. by 1 ‰ when
assuming a maximum temperature difference of 4 to 5◦C).

(2) The amplitude reduction fromδ18Op to δ18Owatercould
also originate from the lake residence time, acting as a buffer
for extreme variations inδ18Op over time (see Sect. 4.1.2).
This effect could increase with longer residence time in
cold phases generally characterized by lower temperature
and humidity and thus potentially less moisture reaching the
lake setting. (3) The global isotope-temperature relationship
(Dansgaard, 1964) is based on recent precipitation from dif-
ferent regions. There is no detailed information if thisδ18Op-
MAAT relationship is valid for the region, nor if it might have
changed through time. Additionally, every singleδ18Odiatom
sample refers to centennial time scales, thus longer than the
period considered by Dansgaard (1964). However, the rea-
sonable order of magnitude of118O in the Lake El’gygytgyn
isotope record indicates that air temperatures should be the
main driver.

4.2 Comparison with other Lake El’gygytgyn records

4.2.1 δ18Odiatom Holocene study

Swann et al. (2010) examined the oxygen isotope compo-
sition of diatoms for the first 23 ka at Lake El’gygytgyn in
relatively high resolution (now until 2 ka BP: every 0.17 ka;
2 k–22 ka BP: on average every 0.3 ka.; core Lz1029; Fig. 6).
Differences exist between the two studies and a relatively
constant offset of 3.4± 1.0 ‰, n = 16 was observed. The
studies are compared and simplified in the following sec-
tion to study1 (Swann et al., 2010) and study2 (our data).
While for study1 the 5–75 µm fraction was used (comprised
of Cyclotella ocellataandPliocaenicus costatus) to provide
enough material for isotope analysis, in study2 the< 10 µm
fraction was used in order to obtain single-species sam-
ples of Cyclotella ocellata. Differences in diatom assem-
blages (and different living conditions between both species)
between the two studies could have caused the different
δ18O-values, although numerous studies have found no ev-
idence of a species-dependent isotope fractionation in di-
atoms (Schmidt et al., 1997, 2001; Brandriss et al., 1998;
Moschen et al., 2005). Chapligin et al. (2012) analysed the
Pliocaenicus-dominated> 10 µm fraction vs. theCyclotella-
dominated< 10 µm fraction for sub-surface samples from
Lake El’gygytgyn and detected no significant difference in
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Fig. 6. Both existing studies onδ18Odiatom-values from Lake
El’gygytgyn until the LGM. Left: our study (study2), uncorrected
(grey) and corrected (black)δ18O record; middle: study by Swann
et al. (2010) (study2); right: the resulting offsets between the two
studies.

δ18Odiatom-values between the two size fractions after con-
tamination correction.

The purity of diatoms in a sample could cause differences
in δ18O-values between both studies. The % cont. in study1
was assessed by counting under a light microscope, resulting
in a mean sample purity of 95.9± 1.9 % (1σ), while study2
showed a purity of 94.6± 3.4 %. Study1 did not correct
the measured values for contamination whereas study2 did.
However, higher contamination should cause lowerδ18O-
values for study1, which is not the case.

Different dehydration techniques were applied in both lab-
oratories (SWF, iGFD), but an inter-laboratory comparison
showed for both techniques results within standard devia-
tion on various biogenic working standards (Chapligin et
al., 2011) between the two laboratories. The removal of Si-
OH groups in Nickel cylinders by using SWF as applied
in study1 could potentially remove oxygen from clay struc-
tures, whereas iGFD removes just H2O and -OH groups.
However, study2 corrected for contamination, so a signifi-
cant difference due to different dehydration techniques can
also be excluded. Both studies show different analytical re-
producibility (mean SD (1σ) = 0.34 ‰ for study1 vs. 0.13 ‰
for study2) but a similar trend can be observed. In both
records,δ18O-values increase until 8–10 ka, corresponding
to the HTM (study1: +27.0 to +27.4 ‰, increase between 3–
10.7 ka; study2: +23.4 ‰ peak at 8.4 ka), and decrease un-
til 20–22 ka, corresponding to the LGM (study1: +22.4 to
+22.5 ‰ at 21.4–21.6 ka; study2: +19.1 to +20.3 ‰ at 22.1–
23.1 ka). Hence, no obvious reason for the offset inδ18O-
values between the two studies could be observed, but both

records show similar trends, indicating that conclusions on
palaeoclimatic changes can be drawn based on relativeδ18O
changes in the individual studies.

4.2.2 Biogenic silica, TiO2, magnetic susceptibility

For a longer time-series, we compared measurements of bio-
genic silica (BSi [%]), TiO2 [%] and magnetic susceptibil-
ity analysed on the same core (Lz1024; Frank et al., 2012)
to our δ18O record (Fig. 7). BSi can be generally used as a
proxy for nutrient availability and bioproductivity or primary
production (Ragueneau et al., 2000). TiO2 is commonly used
as a proxy for clastic sediment supply from fluvial (Haug et
al., 2001) or eolian (Yancheva et al., 2007) transport and of-
ten related to weathering (Minyuk et al., 2011). To compare
the δ18O record with both data sets (BSi record, Rosén et
al., 2010; TiO2, Frank et al., 2012), we interpolated between
sample depths to get comparable data. Both BSi and TiO2
records do not correlate well with theδ18O record (δ18O
vs. BSi, r = −0.14; δ18O vs. TiO2, r = −0.33). The anti-
correlation of the overall record is mainly due to the first
three meters of the core and the high peak of BSi at the time
interval corresponding to the LGM (around 1.6 m depth).
High BSi percentages are not necessarily linked to increased
temperatures but also to a higher nutrient availability. High
TiO2 percentages can be explained by enhanced weathering
(maximum in TiO2percentage). This is accompanied by a
minimum inδ18O-values in cold periods.

Magnetic susceptibility in lake sediments reflects the con-
centration of magnetic mineral phases, which is controlled
by preservation in Lake El’gygytgyn sediments (Nowaczyk
et al., 2007). Anoxic bottom and pore waters dissolve the re-
spective mineral phases while keeping preserved under oxic
conditions. Thus, high and low magnetic susceptibility val-
ues can represent interglacials and glacials but a high organic
content during interglacials can also induce anoxic bottom
water conditions.

None of the compared proxies are directly related to tem-
perature and precipitation, and hence only weak correlations
exist between these proxies and the diatomδ18O signal. It is
remarkable, though, thatδ18O peaks often occur earlier than
TiO2 minima or BSi maxima percentages (cf.δ18O at 5.50–
6.22 m depth vs. TiO2 and BSi at 5.30–5.80 m;δ18O, 2.40–
2.70 m vs. TiO2 and BSi, 2.40–2.00 m), which could indicate
a more direct atmospheric signal responsible forδ18O, while
there is a delayed reaction in the more indirect proxy records
due to subsequent weathering (TiO2) and nutrient availabil-
ity (BSi).

4.3 Comparison with other regional and global
climate records

The diatomδ18O record was compared with prominent cli-
mate curves such as the global marineδ18O benthic stack
LR04 (Lisiecki and Raymo, 2005; henceforth simplified to
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Fig. 7. Comparison of the(a) δ18Odiatom record with other Lake El’gygytgyn records:(b) TiO2 [%], (c) BSi [%] (both Frank et al., 2012)
analysed with FTIRS (Rosén et al., 2010) and(d) magnetic susceptibility for core Lz1024. Shaded parts indicate interglacial periods.

LR04) and the glacialδ18O record from the North Green-
land Ice Core Project (NGRIP; North-Greenland-Ice-Core-
Project members, 2004; henceforth simplified to NGRIP).
As this latter record ends at∼ 123 ka, theδD Dome-C
record from the European Project for Ice Coring in Antarc-
tica (EPICA; EPICA members, 2004 and 2006; henceforth
simplified to EPICA) was used for comparison further down-
core as well as the mean monthly (July) insolation at 67◦ N
(Laskar et al., 2004), being indicative for the main diatom
blooming period (Fig. 8).

For comparing the EPICA, the LR04 record and the mean
monthly (July) insolation at 67◦ N with our δ18O record we
interpolated between sample ages. The correlation of the di-
atomδ18O record and the stackedδ18O LR04 record (Fig. 9;
r = +0.58) andδD EPICA record (Fig. 9;r = +0.69) are
significant (p < 0.05), indicating that a clear precipitation
driven climate signal is preserved in theδ18O record from
diatoms at Lake El’gygytgyn.

The correlation between the diatomδ18O record and the
mean monthly (July) insolation at 67◦ N is r = +0.56. When
correlating this record to the different Milankovitch cycles,
the 41 ka cycle caused by the obliquity of the ecliptic is
clearly the best fit (r = +0.67; eccentricity:r = +0.29; pre-
cession:r = −0.30). Hence, solar forcing, especially the
41 ka obliquity cycle, seems to be the main forcing factor on
longer time scales forδ18O in diatoms at Lake El’gygytgyn.

On the one hand, this further supports the proposed age
model, on the other hand this shows the potential ofδ18O in
diatoms at Lake El’gygytgyn as a long-term climate archive
back to 3.6 Ma.

4.4 Paleoclimate reconstruction

Glacial-interglacial cycles are clearly visible in the presented
δ18Odiatomrecord at Lake El’gygytgyn dating back to 250 ka.
This includes prominent minima and maxima such as the
Holocene Thermal Maximum (HTM,δ18O around +23 ‰,
8.9 ka). A post-HTM cooling trend can be observed, while
in the pre-HTM time the Younger Dryas stadial (Greenland
Stadial 1) has not been identified in theδ18O record, which
might be due to the relatively low resolution. However, in
the higher resolvedδ18O record of Swann et al. (2010) a lo-
cal minimum in the Younger Dryas exists, but is not clearly
visible within the general trend. The LGM (δ18O = +19.1 ‰,
23.1 ka) reflects the absolute minimum of the record and cor-
responds to minima in theδ18O NGRIP,δD EPICA Dome-C
and stackedδ18O LR04 records (Fig. 8) as well as in the
July insolation record from 67◦ N. However, the LGM min-
imum in the Lake El’gygytgynδ18O record is earlier than
those in LR04 and EPICA (20–18 ka), whereas the insolation
minimum at 67◦ N occurs at the same time (∼ 23 ka). De-
spite the relatively low resolution, two maxima in the MIS 3
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Fig. 8. (a)Theδ18Odiatomrecord is plotted versus(b) July insolation at 67◦ N (Laskar et al., 2004)(c) δ18O from the ice-core record NGRIP
(North-Greenland-Ice-Core-Project members, 2004)(d) the stacked marine oxygen isotope record LR04 (Lisiecki and Raymo, 2005) and
(e) δD from EPICA Dome-C ice-core record (EPICA members, 2004, 2006). For both ice-core records: complete record in grey; spline
smoothing in black. Warmer periods corresponding to MIS 1, MIS 3, MIS 5 and MIS 7 are marked in grey, interglacials and significant
interstadials are labelled.

interstadial can be distinguished. These maxima generally
coincide with the mid MIS 3 warm phase (+22.4 ‰, 34.3 ka)
and early MIS 3 warm phase (+23.3 ‰, 54.6 ka), as stated
for Siberia (e.g. Swann et al., 2005). The colder MIS 4 is re-
flected by relatively lowerδ18O-values between 70 and 60 ka.
The local minimum (δ18O = +19.6 ‰), verified by multiple
data points, occurs at∼ 70 ka and matches the NGRIP and
the insolation minimum. After the LGM minimum it is the
second lowest minimum, reflecting a cold time period. The
MIS 4 is preceded by a characteristic maximum correspond-
ing to the MIS 5.5 interglacial (+24.4 ‰, 127.2 ka) being the
absolute maximum of the record. Again, this maximum cor-
relates well with the maxima of the EPICA and the inso-
lation record. However, the increase towards higherδ18O-
values occurs earlier than in the other records and already
at ∼ 133 ka the values are close to the peak maximum. Fur-
ther maxima are present in the time interval corresponding
to MIS 7.1 and 7.3 (plateau∼ +23.0 ‰, ∼ 209–203 ka) as
well as MIS 7.5 (+23.6 ‰, 244.0 ka). The intermediate pe-
riod of MIS 7.2 could not be detected despite the analysis
of four samples within this time. Hence, theδ18O record
shows a plateau which is more similar to the weakly de-
veloped minima of the EPICA and LR04 records than to
the distinct minimum of the insolation record at∼ 206 ka.
The δ18O minimum corresponding to MIS 7.4 (+21.5 ‰,

∼ 231 ka) correlates well with the EPICA, LR04 and insola-
tion minima. The time corresponding to MIS 7.5 is reflected
by the localδ18O maximum (+23.6 ‰, 244.0 ka), which oc-
curs slightly earlier than in the EPICA, LR04 and insolation
record (∼ 240 ka).

According to the presentedδ18Odiatom record of Lake
El’gygytgyn, similar temperatures occurred in the time of the
HTM, MIS 3 and MIS 7, whereas the MIS 5.5 interglacial
was warmer than the Holocene. Comparing similar peak av-
erageδ18O-values from HTM (+22.8 ‰; 11.1–8.4 ka) and
MIS 7 (+22.6 ‰; 244.0–202.8 ka) withδ18O-values from the
time corresponding to MIS 5.5 (+23.6 ‰; 127.2–123.6 ka),
the values differ by 0.8–1.0 ‰, equivalent to about 1 to
1.5◦C difference in mean annual air temperature (MAAT)
(Dansgaard, 1964; Rozanski et al., 1993; calculated as de-
scribed in Sect. 4.1.4). This is in the range of the pollen spec-
tra temperature reconstructions by Melles et al. (2012) who
found the MIS 5.5 to have slightly higher mean temperatures
of the warmest month (MTWM, i.e. July) as compared to
the HTM data. The most recentδ18O-value of +21.4 ‰ is
around 1.5 ‰ below the HTMδ18O-value and corresponds
to a MAAT decrease of about 2◦ to 2.5◦C, which slightly ex-
ceeds pollen-based reconstructions by Melles et al. (2012)
(MWTM difference ∼ 1◦ to 2◦C between today and both
HTM and MIS 5e = MIS 5.5). In the global marine LR04
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Fig. 9. Correlation between theδ18Odiatom record and(a) mean monthly insolation (July)(b) the marine LR04 stack and(c) the
δDEPICA Dome-Crecord.

record, abrupt warming and slow cooling trends were ob-
served, whereas in ourδ18O record both warming and cool-
ing processes seem to occur with the same speed. However,
the reason for the different reaction time is not yet under-
stood but may be linked to the fast reaction time of the lake
water to climate change.

5 Conclusions

Samples from the upper 13 m (dating back about 250 ka) of
the 16.5 m sediment core drilled at Lake El’gygytgyn (far
east Russian Arctic) were analysed for the oxygen isotope
composition of biogenic silica (diatoms). For this purpose
the < 10 µm fraction was used, showing mostly a mono-
specific diatom assemblage ofCyclotella ocellata. Sam-
ple purity was analysed by EDS andδ18Odiatom-values cor-
rected using geochemical mass-balancing. Despite a decreas-
ing trend in silanol group percentages of about 25 % from
the topmost sample downcore detected by FTIRS, this di-
agenetic change is not reflected in theδ18O record. The
δ18Odiatom signal is clearly controlled by theδ18O signal
from precipitation (driven by temperature at the point of con-
densation in the atmosphere) with downcore variations, indi-
cating that glacial-interglacial cycles are present throughout
the whole core. The Holocene Thermal Maximum (HTM;
δ18O peak around +23 ‰; 8.9 ka), the Last Glacial Maximum
(LGM; +19.1 ‰, 23.1 ka) as well as the MIS 5.5 interglacial
(+24.4 ‰, 127.2 ka) and the interval corresponding to MIS
7.1, 7.3 (plateau around +23.0 ‰,∼209–203 ka) and MIS

7.5 (+23.6 ‰, 244.0 ka) are clearly visible. A peak-to-peak
amplitude of118O =5.3 ‰ between the MIS 5.5 absolute
maximum and the LGM absolute minimum was detected.
This shift would be equal to a change in mean annual air
temperature of about 9◦C when assuming that changes in
δ18Op and δ18Olake waterare governed by atmospheric tem-
perature at the point of condensation (+0.6 ‰◦C−1 for high
latitudes). However, variations in moisture source and conti-
nentality could be still masked within this difference.

Generally, theδ18O record tends to peak earlier than the
weathering (TiO2 [%]) or bioproductivity (BSi [%]) proxy
records, indicating thatδ18O precipitation signal rapidly re-
sponds to global/regional climate change while TiO2 re-
acts on enhanced weathering in cold periods or BSi per-
centages increase after warmer time intervals with a certain
delay. The correlations of theδ18O record with theδ18O
benthic stack LR04 (r = 0.58) and theδD EPICA Dome-
C record (r = 0.69) are significant and show the sensitivity
of Lake El’gygytgyn and the wider Arctic climate system to
global climate conditions. However, when comparing Lake
El’gygytgyn to these global records, the LGM, MIS 7.5 and
the δ18O-values increase towards the MIS 5.5 occur earlier.
From the Milankovitch cycles the 41 ka obliquity cycle cor-
relates best with theδ18O record and is most likely one of
the main forcing factors on longer time scales forδ18O in
diatoms at Lake El’gygytgyn. This is the longest continu-
ous terrestrialδ18O record from the Arctic directly reflect-
ing δ18O precipitation signals. The work will be expanded to
sediment core 5011-1 (dating back to about 3.6 Ma), which

Clim. Past, 8, 1621–1636, 2012 www.clim-past.net/8/1621/2012/



B. Chapligin et al.: A 250 ka oxygen isotope record from diatoms 1633

was drilled within the ICDP program at Lake El’gygytgyn in
early 2009.
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