171 research outputs found

    MAPS-SNMA ShaD.O.w D.O. Day Rowan SOM Pipeline Program: A Pilot Study

    Get PDF
    Prior to being a medical student, a majority of pre-medical students have not encountered the course load intensity, academic rigor, and time management required by a medical school curriculum. Diversifying the workforce has been shown to have benefits, especially at the micro or patient level, since having racial or ethnic concordance between providers and patients has been associated with increased levels of satisfaction and improvements in certain clinical outcomes. The number of MDs increased to 841,321 or 91.8% versus 72,961 DOs or 8.0% creating the need for minorities to be knowledgeable of both MD and DO paths to becoming a physician. To provide more knowledge of osteopathic medicine and osteopathic physicians, the Minority Association of Premedical Students (M.A.P.S.) and the the Student National Medical Association (S.N.M.A.) of Rowan University School of Osteopathic Medicine have implemented a ShaDOw DO Day program for the graduate students of Rowan University Graduate School of Biomedical Sciences. The ShaDOw DO Day program will give MAPS students the opportunity to witness the resilience, discipline, and motivation that successful medical students possess.This program will also provide MAPS students with the opportunity to explore a potential career in medicine. Students will gain a perspective on osteopathic principles and osteopathic manipulative medicine. Participants of the program will also be introduced to the quality education an osteopathic medical school such as RowanSOM instills in its students to produce competent and compassionate physicians. Therefore, it is imperative that graduate students learn from medical students to increase their knowledge of osteopathic medicine. To analyze the effectiveness of this program, pre-assessment and post-assessment surveys were given to the participants. Overall, an increase in the understanding of osteopathic medicine and consideration of a career in a health profession and/or medicine was observed demonstrating both the need and success of our program initiative

    The practice of cultural ecology: network connectivity in the creative economy

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis Group. ABSTRACT: This paper reflects on approaches to collaborative knowledge exchange projects between UK universities and the creative economy. It develops a preliminary account of cultural ecology as a systematic approach to producing impact in the creative economy. It argues that such an approach is a powerful way to aggregate micro-businesses and small and medium sized enterprises in a meaningful network of new relationships. The paper uses social network analysis software to begin to visualise the pattern of relationships that constitute the ecosystem. The paper reports on the work of the Research and Enterprise for Arts and Creative Technologies Hub, one of four Knowledge Exchange Hubs for the Creative Economy established by the Arts and Humanities Research Council

    Subcellular Location, Phosphorylation and Assembly into the Motor Complex of GAP45 during Plasmodium falciparum Schizont Development

    Get PDF
    An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion

    Regulation of Plasmodium falciparum Glideosome Associated Protein 45 (PfGAP45) Phosphorylation

    Get PDF
    The actomyosin motor complex of the glideosome provides the force needed by apicomplexan parasites such as Toxoplasma gondii (Tg) and Plasmodium falciparum (Pf) to invade their host cells and for gliding motility of their motile forms. Glideosome Associated Protein 45 (PfGAP45) is an essential component of the glideosome complex as it facilitates anchoring and effective functioning of the motor. Dissection of events that regulate PfGAP45 may provide insights into how the motor and the glideosome operate. We found that PfGAP45 is phosphorylated in response to Phospholipase C (PLC) and calcium signaling. It is phosphorylated by P. falciparum kinases Protein Kinase B (PfPKB) and Calcium Dependent Protein Kinase 1 (PfCDPK1), which are calcium dependent enzymes, at S89, S103 and S149. The Phospholipase C pathway influenced the phosphorylation of S103 and S149. The phosphorylation of PfGAP45 at these sites is differentially regulated during parasite development. The localization of PfGAP45 and its association may be independent of the phosphorylation of these sites. PfGAP45 regulation in response to calcium fits in well with the previously described role of calcium in host cell invasion by malaria parasite

    Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion.

    Get PDF
    Although there have been numerous advances in our understanding of how apicomplexan parasites such as Toxoplasma gondii enter host cells, many of the signaling pathways and enzymes involved in the organization of invasion mediators remain poorly defined. We recently performed a forward chemical-genetic screen in T. gondii and identified compounds that markedly enhanced infectivity. Although molecular dissection of invasion has benefited from the use of small-molecule inhibitors, the mechanisms underlying induction of invasion by small-molecule enhancers have never been described. Here we identify the Toxoplasma ortholog of human APT1, palmitoyl protein thioesterase-1 (TgPPT1), as the target of one class of small-molecule enhancers. Inhibition of this uncharacterized thioesterase triggered secretion of invasion-associated organelles, increased motility and enhanced the invasive capacity of tachyzoites. We demonstrate that TgPPT1 is a bona fide depalmitoylase, thereby establishing an important role for dynamic and reversible palmitoylation in host-cell invasion by T. gondii

    Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Get PDF
    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase

    Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)

    Get PDF
    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization
    corecore