296 research outputs found
Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis
10.1186/ar2365Arthritis Research and Therapy101R1
Tofacitinib synthesis – An asymmetric challenge
co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007265).
The authors would like to thank Hovione FarmaCiencia SA for financial support.Tofacitinib is a Janus activated kinase (JAK) inhibitor approved for the treatment of rheumatoid arthritis and active psoriatic arthritis. Its synthesis normally involves long synthetic sequences due to the chirality associated to the piperidine ring. This review is a comprehensive analysis of the different synthetic methods used to prepare this active pharmaceutical ingredient (API), covering the related journal and patent literature.authorsversionpublishe
Kinase inhibitors for the treatment of inflammatory and autoimmune disorders
Drugs targeting inhibition of kinases for the treatment of inflammation and autoimmune disorders have become a major focus in the pharmaceutical and biotech industry. Multiple kinases from different pathways have been the targets of interest in this endeavor. This review describes some of the recent developments in the search for inhibitors of IKK2, Syk, Lck, and JAK3 kinases. It is anticipated that some of these compounds or newer inhibitors of these kinases will be approved for the treatment of rheumatoid arthritis, psoriasis, organ transplantation, and other autoimmune diseases
PI3K-δ and PI3K-γ Inhibition by IPI-145 Abrogates Immune Responses and Suppresses Activity in Autoimmune and Inflammatory Disease Models
SummaryPhosphoinositide-3 kinase (PI3K)-δ and PI3K-γ are preferentially expressed in immune cells, and inhibitors targeting these isoforms are hypothesized to have anti-inflammatory activity by affecting the adaptive and innate immune response. We report on a potent oral PI3K-δ and PI3K-γ inhibitor (IPI-145) and characterize this compound in biochemical, cellular, and in vivo assays. These studies demonstrate that IPI-145 exerts profound effects on adaptive and innate immunity by inhibiting B and T cell proliferation, blocking neutrophil migration, and inhibiting basophil activation. We explored the therapeutic value of combined PI3K-δ and PI3K-γ blockade, and IPI-145 showed potent activity in collagen-induced arthritis, ovalbumin-induced asthma, and systemic lupus erythematosus rodent models. These findings support the hypothesis that inhibition of immune function can be achieved through PI3K-δ and PI3K-γ blockade, potentially leading to significant therapeutic effects in multiple inflammatory, autoimmune, and hematologic diseases
Inhibiting ex-vivo Th17 responses in Ankylosing Spondylitis by targeting Janus kinases
Treatment options for Ankylosing Spondylitis (AS) are still limited. The T helper cell 17 (Th17) pathway has emerged as a major driver of disease pathogenesis and a good treatment target. Janus kinases (JAK) are key transducers of cytokine signals in Th17 cells and therefore promising targets for the treatment of AS. Here we investigate the therapeutic potential of four different JAK inhibitors on cells derived from AS patients and healthy controls, cultured in-vitro under Th17-promoting conditions. Levels of IL-17A, IL-17F, IL-22, GM-CSF and IFN gamma were assessed by ELISA and inhibitory effects were investigated with Phosphoflow. JAK1/2/3 and TYK2 were silenced in CD4+ T cells with siRNA and effects analyzed by ELISA (IL-17A, IL-17F and IL-22), Western Blot, qPCR and Phosphoflow. In-vitro inhibition of CD4+ T lymphocyte production of multiple Th17 cytokines (IL-17A, IL-17F and IL-22) was achieved with JAK inhibitors of differing specificity, as well as by silencing of JAK1-3 and Tyk2, without impacting on cell viability or proliferation. Our preclinical data suggest JAK inhibitors as promising candidates for therapeutic trials in AS, since they can inhibit multiple Th17 cytokines simultaneously. Improved targeting of TYK2 or other JAK isoforms may confer tailored effects on Th17 responses in AS
Are Th17 Cells an Appropriate New Target in the Treatment of Rheumatoid Arthritis?
Th17 cells play crucial roles not only in host defense but also in many human autoimmune diseases and corresponding animal models. Although many of the fundamental principles regarding Th17 biology have been rapidly elucidated in mice, there remain numerous controversies regarding the differentiation, plasticity, and pathogenicity of human Th17 cells. In this review, we consider these open questions in comparison to what has already been clarified in mice, and discuss the potential impact of discoveries related to the Th17 pathway on the development of new therapeutic strategies in Th17 driven autoimmune diseases, specifically rheumatoid arthritis. Clin Trans Sci 2010; Volume 3: 319–326Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79296/1/j.1752-8062.2010.00233.x.pd
Hemagglutinin from the H5N1 Virus Activates Janus Kinase 3 to Dysregulate Innate Immunity
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in humans. There are no effective vaccines or antiviral therapies currently available to control fatal outbreaks due in part to the lack of understanding of virus-mediated immunopathology. In our study, we used hemagglutinin (HA) of H5N1 virus to investigate the related signaling pathways and their relationship to dysregulated innate immune reaction. We found the HA of H5N1 avian influenza triggered an abnormal innate immune signalling in the pulmonary epithelial cells, through an unusual process involving activation of Janus kinase 3 (JAK3) that is exclusively associated with γc chain and is essential for signaling via all γc cytokine receptors. By using a selective JAK3 inhibitor and JAK3 knockout mice, we have, for the first time, demonstrated the ability to target active JAK3 to counteract injury to the lungs and protect immunocytes from acute hypercytokinemia -induced destruction following the challenge of H5N1 HA in vitro and in vivo. On the basis of the present data, it appears that the efficacy of selective JAK3 inhibition is likely based on its ability to block multiple cytokines and protect against a superinflammatory response to pathogen-associated molecular patterns (PAMPs) attack. Our findings highlight the potential value of selective JAK3 inhibitor in treating the fatal immunopathology caused by H5N1 challenge
Dual Anti-OX40/IL-2 Therapy Augments Tumor Immunotherapy via IL-2R-Mediated Regulation of OX40 Expression
The provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naïve T cells but rather, is transiently up-regulated following TCR stimulation. Although TCR engagement is necessary for inducing OX40 expression, the downstream signals that regulate OX40 itself remain unclear. In this study, we demonstrate that OX40 expression is regulated through a TCR and common gamma chain cytokine-dependent signaling cascade that requires JAK3-mediated activation of the downstream transcription factors STAT3 and STAT5. Furthermore, combined treatment with an agonist anti-OX40 mAb and IL-2 augmented tumor immunotherapy against multiple tumor types. Dual therapy was also able to restore the function of anergic tumor-reactive CD8 T cells in mice with long-term well-established (>5 wks) tumors, leading to increased survival of the tumor-bearing hosts. Together, these data reveal the ability of TCR/common gamma chain cytokine signaling to regulate OX40 expression and demonstrate a novel means of augmenting cancer immunotherapy by providing dual anti-OX40/common gamma chain cytokine-directed therapy
The Janus kinases (Jaks)
The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs
- …