12 research outputs found

    Inhibition of 12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes

    Get PDF
    Islet β-cell dysfunction and aggressive macrophage activity are early features in the pathogenesis of type 1 diabetes (T1D). 12/15-Lipoxygenase (12/15-LOX) is induced in β-cells and macrophages during T1D and produces proinflammatory lipids and lipid peroxides that exacerbate β-cell dysfunction and macrophage activity. Inhibition of 12/15-LOX provides a potential therapeutic approach to prevent glycemic deterioration in T1D. Two inhibitors recently identified by our groups through screening efforts, ML127 and ML351, have been shown to selectively target 12/15-LOX with high potency. Only ML351 exhibited no apparent toxicity across a range of concentrations in mouse islets, and molecular modeling has suggested reduced promiscuity of ML351 compared with ML127. In mouse islets, incubation with ML351 improved glucose-stimulated insulin secretion in the presence of proinflammatory cytokines and triggered gene expression pathways responsive to oxidative stress and cell death. Consistent with a role for 12/15-LOX in promoting oxidative stress, its chemical inhibition reduced production of reactive oxygen species in both mouse and human islets in vitro. In a streptozotocin-induced model of T1D in mice, ML351 prevented the development of diabetes, with coincident enhancement of nuclear Nrf2 in islet cells, reduced β-cell oxidative stress, and preservation of β-cell mass. In the nonobese diabetic mouse model of T1D, administration of ML351 during the prediabetic phase prevented dysglycemia, reduced β-cell oxidative stress, and increased the proportion of anti-inflammatory macrophages in insulitis. The data provide the first evidence to date that small molecules that target 12/15-LOX can prevent progression of β-cell dysfunction and glycemic deterioration in models of T1D

    Local Diversification of Methicillin- Resistant Staphylococcus aureus ST239 in South America After Its Rapid Worldwide Dissemination

    Get PDF
    The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general, the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations

    High-Resolution Mapping of Carbene-Based Protein Footprints

    No full text
    Carbene chemistry has been used recently in structural mass spectrometry as a labeling method for mapping protein surfaces. The current study presents a method for quantitating label distribution at the amino acid level and explores the nature and basis for an earlier observation of labeling bias. With the use of a method based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) applied to digests of holo-calmodulin, we developed a quantitation strategy to map site-specific incorporation of carbene, generated from photolysis of ionic label precursors 2-amino-4,4-azipentanoic acid and 4,4-azipentanoic acid. The approach provides reliable incorporation data for fragments generated by electron-transfer dissociation, whereas high-energy collisional dissociation leads to energy and sequence-dependent loss of the label as a neutral. However, both can produce data suitable for mapping residues in the interaction of holo-calmodulin with M13 peptide ligand. Site-specific labeling was monitored as a function of reagent, ionic strength, and temperature, demonstrating that electrostatic interactions at the protein surface can “steer” the distribution of label precursors to sites of surface charge and favor label insertion into residues in the vicinity of the surface charge. A further preference for insertion into carboxylates was observed, based on chemical reactivity. We suggest that decoupling surface partitioning from the chemistry of insertion offers a flexible, tunable labeling strategy for structural mass spectrometry that can be applied to a broad range of protein surface compositions and promotes the design of reagents to simplify the workflow

    Data from: Lambda interferon restructures the nasal microbiome and increases susceptibility to Staphylococcus aureus superinfection

    No full text
    Much of the morbidity and mortality associated with influenza virus respiratory infection is due to bacterial coinfection with pathogens that colonize the upper respiratory tract such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. A major component of the immune response to influenza virus is the production of type I and III interferons. Here we show that the immune response to infection with influenza virus causes an increase and restructuring of the upper respiratory microbiota in wild-type (WT) mice but not in Il28r−/− mutant mice lacking the receptor for type III interferon. Mice lacking the IL-28 receptor fail to induce STAT1 phosphorylation and expression of its regulator, SOCS1. Il28r−/− mutant mice have increased expression of interleukin-22 (IL-22), as well as Ngal and RegIIIγ, in the nasal cavity, the source of organisms that would be aspirated to cause pneumonia. Proteomic analysis reveals changes in several cytoskeletal proteins that contribute to barrier function in the nasal epithelium that may contribute to the effects of IL-28 signaling on the microbiota. The importance of the effects of IL-28 signaling in the pathogenesis of MRSA pneumonia after influenza virus infection was confirmed by showing that WT mice nasally colonized before or after influenza virus infection had significantly higher levels of infection in the upper airways, as well as significantly greater susceptibility to MRSA pneumonia than Il28r−/− mutant mice did. Our results suggest that activation of the type III interferon in response to influenza virus infection has a major effect in expanding the upper airway microbiome and increasing susceptibility to lower respiratory tract infection

    Metadata for sequenced samples

    No full text
    Indicates flu (+/ -) and group (wt versus IL28R) for sequenced samples included in the study

    Parallel Epidemics of Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Infection in North and South America.

    No full text
    BACKGROUND: The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics. METHODS: We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades. RESULTS: Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had a putative common ancestor in 1975, and originated in 1989, in North America, and in 1985, in South America. Emergence of these parallel epidemics coincides with the independent acquisition of the arginine catabolic mobile element (ACME) in North American isolates and a novel copper and mercury resistance (COMER) mobile element in South American isolates. CONCLUSIONS: Our results reveal the existence of 2 parallel USA300 epidemics that shared a recent common ancestor. The simultaneous rapid dissemination of these 2 epidemic clades suggests the presence of shared, potentially convergent adaptations that enhance fitness and ability to spread. J Infect Dis 2015 Dec 15; 212(12):1874-82

    The COSMIC Bubble Helmet : A Non-Invasive Positive Pressure Ventilation System for COVID-19

    No full text
    COSMIC Medical, a Vancouver-based open-source volunteer initiative, has designed an accessible, affordable, and aerosol-confining non-invasive positive-pressure ventilator (NIPPV) device, known as the COSMIC Bubble Helmet (CBH). This device is intended for COVID-19 patients with mild-to-moderate acute respiratory distress syndrome. System Design: CBH is composed of thermoplastic polyurethane, which creates a flexible neck seal and transparent hood. This device can be connected to wall oxygen, NIPPVs including Continuous Positive Airway Pressure and Bi-level Positive Airway Pressure, and mechanical ventilators. Discussion: Justification of CBH design components relied on several factors, predominantly the safety and comfort of patients and healthcare providers. Conclusion: CBH has implications within and outside of the pandemic, as an alternative to invasive mechanical ventilation methods. We have experimentally verified that CBH is effective in minimizing aerosolization risks and performs at specified clinical requirements.Applied Science, Faculty ofMedicine, Faculty ofScience, Faculty ofNon UBCBiomedical Engineering, School ofMaterials Engineering, Department ofUrologic Sciences, Department ofReviewedFacultyResearcherGraduateUndergraduat
    corecore