573 research outputs found

    Spin-1/2 J1-J2 model on the body-centered cubic lattice

    Full text link
    Using exact diagonalization (ED) and linear spin wave theory (LSWT) we study the influence of frustration and quantum fluctuations on the magnetic ordering in the ground state of the spin-1/2 J1-J2 Heisenberg antiferromagnet (J1-J2 model) on the body-centered cubic (bcc) lattice. Contrary to the J1-J2 model on the square lattice, we find for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum disordered phase for strong frustration. The results of both approaches (ED, LSWT) suggest a first order transition at J2/J1 ≈\approx 0.7 from the two-sublattice Neel phase at low J2 to a collinear phase at large J2.Comment: 6.1 pages 7 figure

    Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins

    Full text link
    New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins s interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank n(n (n=s-\frac12$) antisymmetric w.r.t. n pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles

    Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003

    Get PDF
    We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous H-alpha ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four H-alpha ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted

    Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions

    Get PDF
    Traditionally, the quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasi-probability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using {\it true probability distribution functions} is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their co-ordinates and momenta we derive a generalized quantum Langevin equation in cc-numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski equations are the {\it exact} quantum analogues of their classical counterparts. The present work is {\it independent} of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (Smoluchowski equation being considered in the overdamped limit).Comment: RevTex, 16 pages, 7 figures, To appear in Physical Review E (minor revision

    Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

    Full text link
    The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t−3/2t^{-3/2} long time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.Comment: 8 pages, 6 figur

    The SN Ia runaway LP 398-9 : detection of circumstellar material and surface rotation

    Get PDF
    A promising progenitor scenario for Type Ia supernovae (SNeIa) is the thermonuclear detonation of a white dwarf in a close binary system with another white dwarf. After the primary star explodes, the surviving donor can be spontaneously released as a hypervelocity runaway. One such runaway donor candidate is LP 398-9, whose orbital trajectory traces back ≈105 yr to a known supernova remnant. Here, we report the discovery of carbon-rich circumstellar material around LP 398-9, revealed by a strong infrared excess and analysed with follow-up spectroscopy. The circumstellar material is most plausibly composed of inflated layers from the star itself, mechanically and radioactively heated by the past companion’s supernova. We also detect a 15.4 h periodic signal in the UV and optical light curves of LP 398-9, which we interpret as surface rotation. The rotation rate is consistent with theoretical predictions from this supernova mechanism, and the brightness variations could originate from surface inhomogeneity deposited by the supernova itself. Our observations strengthen the case for this double-degenerate SNIa progenitor channel, and motivate the search for more runaway SNIa donors

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
    • 

    corecore