281 research outputs found

    Impact of Insecticides on Parasitoids of the Leafminer, Liriomyza trifolii, in Pepper in South Texas

    Get PDF
    Liriomyza leafminers (Diptera: Agromyzidae) are cosmopolitan, polyphagous pests of horticultural plants and many are resistant to insecticides. Producers in South Texas rely on insecticides as the primary management tool for leafminers, and several compounds are available. The objective of this study is to address the efficacy of these compounds for controlling Liriomyza while minimizing their effects against natural enemies. Research plots were established at Texas AgriLife research center at Weslaco, Texas in fall 2007 and spring 2008 seasons, and peppers were used as a model crop. Plots were sprayed with novaluron, abamectin, spinetoram, lambda-cyhalothrin and water as treatments according to leafminer infestation; insecticide efficacy was monitored by collecting leaves and infested foliage. Plant phenology was also monitored. Novaluron was the most effective insecticide and lambda-cyhalothrin showed resurgence in leafminer density in fall 2007 and no reduction in spring 2008. Other compounds varied in efficacy. Novaluron showed the least number of parasitoids per leafminer larva and the lowest parasitoid diversity index among treatments followed by spinetoram. Liriomyza trifolii (Burgess) was the sole leafminer species on peppers, and 19 parasitoid species were found associated with this leafminer. Application of these insecticides for management of leafminers with conservation of natural enemies is discussed

    Outcome of primary resurfacing hip replacement: evaluation of risk factors for early revision: 12,093 replacements from the Australian Joint Registry

    Get PDF
    BACKGROUND AND PURPOSE: The outcome of modern resurfacing remains to be determined. The Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) started collection of data on hip resurfacing at a time when modern resurfacing was started in Australia. The rate of resurfacing has been higher in Australia than in many other countries. As a result, the AOANJRR has one of the largest series of resurfacing procedures. This study was undertaken to determine the results of this series and the risk factors associated with revision. PATIENTS AND METHODS: Data from the AOANJRR were used to analyze the survivorship of 12,093 primary resurfacing hip replacements reported to the Joint Replacement Registry between September 1999 and December 2008. This was compared to the results of primary conventional total hip replacement reported during the same period. The Kaplan-Meier method and proportional hazards models were used to determine risk factors such as age, sex, femoral component size, primary diagnosis, and implant design. RESULTS: Female patients had a higher revision rate than males; however, after adjusting for head size, the revision rates were similar. Prostheses with head sizes of less than 50 mm had a higher revision rate than those with head sizes of 50 mm or more. At 8 years, the cumulative per cent revision of hip resurfacing was 5.3 (4.6-6.2), as compared to 4.0 (3.8-4.2) for total hip replacement. However, in osteoarthritis patients aged less than 55 years with head sizes of 50 mm or more, the 7-year cumulative per cent revision for hip resurfacing was 3.0 (2.2-4.2). Also, hips with dysplasia and some implant designs had an increased risk of revision. INTERPRETATION: Risk factors for revision of resurfacing were older patients, smaller femoral head size, patients with developmental dysplasia, and certain implant designs. These results highlight the importance of patient and prosthesis selection in optimizing the outcome of hip resurfacing

    Emergence of Collective Territorial Defense in Bacterial Communities: Horizontal Gene Transfer Can Stabilize Microbiomes

    Get PDF
    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment

    Gordon Valentine Manley and his contribution to the study of climate change: a review of his life and work

    Get PDF
    British climatologist and geographer, Gordon Manley (1902–1980), is perhaps best known for his pioneering work on climate variability in the UK, for establishing the Central England Temperature series and, for his pivotal role in demonstrating the powerful relationship between climate, weather, and culture in post-World War II Britain. Yet Manley made many contributions, both professional and popular, to climate change debates in the twentieth century, where climate change is broadly understood to be changes over a range of temporal and spatial scales rather than anthropogenic warming per se. This review first establishes how Manley's work, including that on snow and ice, was influenced by key figures in debates over climatic amelioration around the North Atlantic between 1920s and 1950s. His research exploring historical climate variability in the UK using documentary sources is then discussed. His perspectives on the relationship between climate changes and cultural history are reviewed, paying particular attention to his interpretation of this relationship as it played out in the UK. Throughout, the review aims to show Manley to be a fieldworker and an empiricist and reveals how he remained committed to rigorous scientific investigation despite changing trends within his academic discipline

    Chronic Alcohol Exposure Alters Behavioral and Synaptic Plasticity of the Rodent Prefrontal Cortex

    Get PDF
    In the present study, we used a mouse model of chronic intermittent ethanol (CIE) exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC). In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs) in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP) showed that CIE exposure was associated with altered expression of long-term potentiation (LTP). Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC

    Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis

    Get PDF
    Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis

    Combinations of Plant Water-Stress and Neonicotinoids Can Lead to Secondary Outbreaks of Banks Grass Mite (Oligonychus Pratensis Banks)

    Get PDF
    Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient

    Effects of Soil Water and Nitrogen on Growth and Photosynthetic Response of Manchurian Ash (Fraxinus mandshurica) Seedlings in Northeastern China

    Get PDF
    Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and photosynthetic response in the temperate ecosystem. seedlings. The seedlings were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower precipitation (LW) (CK −30%), and both with and without N addition for two growing seasons. We demonstrated that water and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was increased in leaf tissues of LW by N addition. seedlings, which may provide novel insights on the potential responses of the forest ecosystem to climate change associated with increasing N deposition

    A water-based training program that include perturbation exercises to improve stepping responses in older adults: study protocol for a randomized controlled cross-over trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gait and balance impairments may increase the risk of falls, the leading cause of accidental death in the elderly population. Fall-related injuries constitute a serious public health problem associated with high costs for society as well as human suffering. A rapid step is the most important protective postural strategy, acting to recover equilibrium and prevent a fall from initiating. It can arise from large perturbations, but also frequently as a consequence of volitional movements. We propose to use a novel water-based training program which includes specific perturbation exercises that will target the stepping responses that could potentially have a profound effect in reducing risk of falling. We describe the water-based balance training program and a study protocol to evaluate its efficacy (Trial registration number #NCT00708136).</p> <p>Methods/Design</p> <p>The proposed water-based training program involves use of unpredictable, multi-directional perturbations in a group setting to evoke compensatory and volitional stepping responses. Perturbations are made by pushing slightly the subjects and by water turbulence, in 24 training sessions conducted over 12 weeks. Concurrent cognitive tasks during movement tasks are included. Principles of physical training and exercise including awareness, continuity, motivation, overload, periodicity, progression and specificity were used in the development of this novel program. Specific goals are to increase the speed of stepping responses and improve the postural control mechanism and physical functioning. A prospective, randomized, cross-over trial with concealed allocation, assessor blinding and intention-to-treat analysis will be performed to evaluate the efficacy of the water-based training program. A total of 36 community-dwelling adults (age 65–88) with no recent history of instability or falling will be assigned to either the perturbation-based training or a control group (no training). Voluntary step reaction times and postural stability using stabiliogram diffusion analysis will be tested before and after the 12 weeks of training.</p> <p>Discussion</p> <p>This study will determine whether a water-based balance training program that includes perturbation exercises, in a group setting, can improve speed of voluntary stepping responses and improve balance control. Results will help guide the development of more cost-effective interventions that can prevent the occurrence of falls in the elderly.</p
    corecore