3,487 research outputs found

    Synthesis of a Molecular Charm Bracelet via Click Cyclization and Olefin Metathesis Clipping

    Get PDF
    We describe the synthesis of a polycatenated cyclic polymer, a structure that resembles a molecular charm bracelet. Ruthenium-catalyzed ring-opening metathesis polymerization of an aminocontaining cyclic olefin monomer in the presence of a chain transfer agent generated an α,ω-diazide functionalized polyamine. Cyclization of the resulting linear polyamine using pseudo-high-dilution coppercatalyzed click cyclization produced a cyclic polymer in 19% yield. The click reaction was then further employed to remove linear contaminants from the cyclic polymer using azide- and alkyne-functionalized scavenging resins, and the purified cyclic polymer product was characterized by gel permeation chromatography, ^1H NMR spectroscopy, and IR spectroscopy. Polymer hydrogenation and conversion to the corresponding polyammonium species enabled coordination and interlocking of diolefin polyether fragments around the cyclic polymer backbone using ruthenium-catalyzed ring-closing olefin metathesis to afford a molecular charm bracelet structure. This charm bracelet complex was characterized by ^1H NMR spectroscopy, and the catenated nature of the small rings was confirmed using two-dimensional diffusion-ordered NMR spectroscopy

    CFD analysis of turbopump volutes

    Get PDF
    An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    The effect of fine crushed concrete aggregate on the durability of structural concrete

    Get PDF
    The specification of crushed concrete aggregates (CCA) is increasing, particularly for low-grade applications, where quality is of less importance. In higher value applications, such as structural concrete, further research is required to understand the effect of CCAs on mechanical and durability performance. One disadvantage of using CCA is that the fine material (0-4mm) is often removed, which is not efficient. This research investigated the effect of fine CCA and its combination with coarse CCA in PC/GGBS structural concretes. The resistance to water and chloride ingress in terms of surface resistivity, sorptivity and rapid chloride migration were evaluated, together with compressive strength to determine compliance with characteristic and target mean strengths. From this limited study of CCA which forms a wider research project, the results indicate that a higher proportion of CCA, both fine and coarse, is detrimental to the resistance to water and chloride ingress, possibly due to the higher water absorption characteristics of the recycled material. The incorporation of GGBS however, significantly improves the durability performance, therefore making structural concrete with fine and coarse CCA a viable option

    Identification of Relationships Between Patients Through Elements in a Data Warehouse Using the Familial, Associational, and Incidental Relationship (FAIR) Initiative: A Pilot Study

    Get PDF
    BACKGROUND: Over the last several years there has been widespread development of medical data warehouses. Current data warehouses focus on individual cases, but lack the ability to identify family members that could be used for dyadic or familial research. Currently, the patient\u27s family history in the medical record is the only documentation we have to understand the health status and social habits of their family members. Identifying familial linkages in a phenotypic data warehouse can be valuable in cohort identification and in beginning to understand the interactions of diseases among families. OBJECTIVE: The goal of the Familial, Associational, and Incidental Relationships (FAIR) initiative is to identify an index set of patients\u27 relationships through elements in a data warehouse. METHODS: Using a test set of 500 children, we measured the sensitivity and specificity of available linkage algorithm identifiers (eg, insurance identification numbers and phone numbers) and validated this tool/algorithm through a manual chart audit. RESULTS: Of all the children, 52.4% (262/500) were male, and the mean age of the cohort was 8 years old (SD 5). Of the children, 51.6% (258/500) were identified as white in race. The identifiers used for FAIR were available for the majority of patients: insurance number (483/500, 96.6%), phone number (500/500, 100%), and address (497/500, 99.4%). When utilizing the FAIR tool and various combinations of identifiers, sensitivity ranged from 15.5% (62/401) to 83.8% (336/401), and specificity from 72% (71/99) to 100% (99/99). The preferred method was matching patients using insurance or phone number, which had a sensitivity of 72.1% (289/401) and a specificity of 94% (93/99). Using the Informatics for Integrating Biology and the Bedside (i2b2) warehouse infrastructure, we have now developed a Web app that facilitates FAIR for any index population. CONCLUSIONS: FAIR is a valuable research and clinical resource that extends the capabilities of existing data warehouses and lays the groundwork for family-based research. FAIR will expedite studies that would otherwise require registry or manual chart abstraction data sources

    Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress.

    Get PDF
    Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms

    Familial, Associational, & Incidental Relationships (FAIR)

    Get PDF
    Identifying familial linkages in a phenotypic data warehouse can be valuable in cohort identification, and beginning to understand interactions of diseases among families. The goal of the Familial, Associational, & Incidental Relationships (FAIR) system is to identify an index set patients’ relationships through elements in a data warehouse. Using a test set of 500 children, we measured the sensitivity and specificity of available linkage algorithm (e.g.: insurance id and phone numbers) and validated this tool/algorithm through a manual chart audit. Sensitivity varied from 16% to 87%, and specificity from 70% to 100% using various combinations of identifiers. Using the “i2b2” warehouse infrastructure, we have now developed a web app that facilitates FAIR for any index population

    Structure-activity profiling of alkaloid natural product pharmacophores against a Schistosoma serotonin receptor

    Full text link
    Serotonin (5-HT) is an important regulator of numerous aspects of flatworm biology, ranging from neuromuscularfunctionto sexualmaturationandegglaying. Intheparasiticblood flukeSchistosomamansoni,5-HTtargets several G-protein coupled receptors (GPCRs), one of which has been demonstrated to couple to cAMP and regulate parasite movement. This receptor, Sm.5HTRL, has been successfully co-expressed in mammalian cells alongside a luminescent cAMP-biosensor, enabling pharmacological profiling for candidate anti-schistosomal drugs. Here, we have utilized this assay to perform structure-activity investigations of 143 compounds containing previously identified alkaloid natural product pharmacophores (tryptamines, aporphines and protoberberines) shown to regulate Sm.5HTRL. These experiments mapped regions of the tryptamine pharmacophore amenable and intolerant to substitution, highlighting differences relative to orthologous mammalian 5-HT receptors. Potent Sm.5HTRL antagonists were identified, and the efficacy of these compounds were evaluated against live adult parasites cultured ex vivo. Such structure-activity profiling, characterizing the effect of various modifications to these core ring systems on Sm.5HTRL responses, provides greater understanding of pharmacophores selective for this target to aid future drug development efforts
    corecore