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Abstract

Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is
an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis
ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed
germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of
superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt
treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many
genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable
element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha
vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene
Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha
and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic
stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results
also provide insight into the complexity of salt stress tolerance mechanisms.
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Introduction

Salinity is an increasingly important agricultural problem. Salt

stress involves a combination of dehydration or osmotic-related

stress effects and damage due to excess sodium ions [1] that greatly

affect plant growth and crop production. Salt stress treatment also

regulated the expression level of many genes involved either

directly or indirectly in plant protection [2,3]. Plant adaptations to

salt stress include avoidance by reduced sodium uptake, seques-

tration of toxic sodium ions away from the cytoplasm, or

production of compatible solutes or osmoprotectants to reduce

molecular disruption [4,5]. Much effort has been directed toward

understanding the molecular mechanisms of plant salt tolerance,

with the ultimate goal of improving salt tolerance of crop plants.

Engineered salt stress resistance has been achieved by over-

expression of genes encoding compatible solutes [6], ion trans-

porters [7], and transcription factors [8] and is a high priority for

commercial and public improvement efforts.

Besides genomics and mutant approaches, research based on

the analysis of natural genetic variation in Arabidopsis and other

species is receiving increased attention [9,10]. Recently, large-scale

evaluation of salt tolerance among different Arabidopsis ecotypes

was performed by several groups [11,12,13]. Several loci

associated with the salt sensitivity response were also mapped

[14,15]. Elemental profiling of shoot tissue from Arabidopsis

ecotypes also revealed different Na+ and K+ accumulation because

of natural variants of AtHKT1 gene [16,17], indicating possible

natural variation of salinity tolerance in Arabidopsis [18]. Global

transcriptome analyses have revealed numerous differences in

transcript abundance among Arabidopsis ecotypes in response to

several abiotic and biotic stresses [19,20,21]. Indeed, thousands of

genes are differentially expressed between pairs of different

Arabidopsis ecotypes under stress conditions [22,23]. These

differentially expressed genes were enriched for those involved in

biotic and abiotic responses, suggesting that natural variation for

gene expression is frequently observed among different Arabi-

dopsis ecotypes. However, different ecotypes can differ for a large

number of genes that are differentially regulated upon the same

treatment [24,25].

The Shahdara ecotype (Sha; also referred to as Shakdara) has

been considered to be more tolerant to drought stress [26],

osmotic stress [27,28] as well as salt stress and ABA treatment

[14,15,29]. These results are consistent with its origin in a region

of overall low precipitation (the Shakdara valley of Tadjikistan;

[30]). Quantitative genetics studies using different Arabidopsis
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ecotypes revealed a large variation for root development and seed

germination under salt stress conditions. Twenty two quantitative

trait loci (QTL) for these traits have been detected by phenotyping

two recombinant inbred line populations, Sha 6Col and Sha 6
Ler [14]. Another study indicated that a premature stop codon

resulting in a truncated Response to ABA and Salt 1 (RAS1)

protein in Sha contributes to the increased salt tolerance [15]

based on QTL mapping.

To date, transcriptomic and physiological level changes

between Sha and other ecotypes under salt stress conditions

remain to be elucidated. To narrow down the list of candidate

genes differentially expressed among Arabidopsis ecotypes under

stress conditions, one salt tolerant (Sha) and two relative salt

susceptible ecotypes (Landsberg erecta (Ler) and Columbia-0 (Col))

were used in this study to characterize transcriptome changes after

salt treatment. The aims of this study are: (1) to detect

physiological changes of three ecotypes under salt stress condi-

tions; (2) to characterize transcriptional variation among these

three ecotypes in the presence and absence of salt; and (3) to

interpret related pathways which are involved in salt tolerance of

the Sha ecotype.

Materials and Methods

Plant materials and growth conditions
Three Arabidopsis thaliana ecotypes Shakdara (Sha), Landsberg

erecta (Ler) and Columbia-0 (Col) were used in this study.

Arabidopsis seeds were surface sterilized and sown on Murashige

and Skoog (MS) agar plates containing full-strength MS salts,

0.8% (w/v) agar, and 3% (w/v) sucrose. The seeds were stratified

at 4uC for 4 days in darkness and then transferred to a growth

chamber with 16 h/8 h light (350 mmol m22s21)/dark cycle at

23uC, or the seeds were directly sown in soil after stratification

under the same conditions.

Salt tolerance test
The standard for measuring germination rates was percent of

seeds with emerged radicles (.1 mm) and/or two cotyledons

turning green, as described by Wang et al. [31]. The root

Figure 1. Comparison of seed germination rates among Col, Ler and Sha under salt stress treatment. (A) Plants were grown on MS plate
supplied with the indicated concentrations of NaCl (mM). Photos were taken after 5 DAG (Days-After-Germination). Bar = 1 cm. (B) & (C) Germination
rates were compared with various concentrations of NaCl. Germination rates were analyzed by counting the number of emergenced radicles after 3
DAG on the indicated concentrations of NaCl in (B) or by counting the number of green cotyledons after 5 DAG in (C). The values indicated means +
SEs of four independent experimental repeats (n = 30). (D) & (E) The kinetics of germination time among Col, Ler and Sha were analyzed with the
same concentration of NaCl (100 mM). Germination rates were determined by counting the number of emergenced radicles (D) and green
cotyledons (E) at the indicated time points. The values indicated means + SEs of four independent experimental repeats (n = 30).
doi:10.1371/journal.pone.0069036.g001

Variation of Arabidopsis Salt Stress Tolerance
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Figure 2. Adult phenotypes analysis among Col, Ler and Sha after salt stress treatment. Salt treatments were initiated at 14 DAS
(Day-After-Sowing). (A) 2-week-old seedlings of Col, Ler and Sha were treated with indicated concentrations of NaCl for 14 days. Plants were
photographed after 2 weeks treatments. (B) Survival rates were calculated from the results of above three independent experiments (n = 20). The
values indicated means + SEs. * indicated significant difference with P,0.05 (t-test) in relative to Ler. (C) Relative dry weight comparison after salt
treatment. The values indicated means + SEs of four independent experimental repeats (n = 30). * indicated significant difference with P,0.05 (t-test)
in relative to Ler. (D) Plants were grown for 2 weeks under normal condition and exposed to different concentrations of NaCl treatments. At 10 days
after treatment, aerial plants were harvested for measurement of relative electrolyte leakage. The values indicated means + SEs of four independent
experimental repeats (n = 15). * indicated significant difference with P,0.05 (t-test) in relative to Ler.
doi:10.1371/journal.pone.0069036.g002

Figure 3. Quantitative comparison of superoxide contents and antioxidant enzyme activities (SOD and CAT) among Col, Ler and
Sha after salt stress treatment. Two-week-old plants were started to be treated with the indicated concentrations of NaCl for 10 days before
measurement in (B), (C) & (D). The values indicated means + SEs of two independent experimental repeats in (B), (C) & (D) (n = 15). * indicated
significant difference with P,0.05 (t-test) in relative to Ler. (A) Visualization of superoxide radical and hydrogen peroxide detected by NBT and DAB
staining. Detections have been done on 2-week-old MS-grown plants subjected to subsequent treatment with 200 mM NaCl for the indicated time.
Bar = 1 cm. (B) Changes in H2O2 content were analyzed with different salt treatment. (C) Changes in SOD activity were analyzed with different salt
treatment. (D) Changes in CAT activity were analyzed with different salt treatment.
doi:10.1371/journal.pone.0069036.g003

Variation of Arabidopsis Salt Stress Tolerance
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elongation data was quantified as described by Verslues et al. [32].

Salt treatment in soil-grown plants was initiated at 14 Days After

Sowing (DAS) as described by Chan et al. [2]. Each ecotype-

treatment combination included five replicate pots with nine

plants per replicate pot. The NaCl concentrations were increased

stepwise to the final concentrations (0, 100, 150, or 200 mM) by

50 mM every 2 days. Nine plants were grown in each pot and four

replicated pots were used for each ecotype and salt treatment

combination in above mentioned growth chamber. All the above

experiments were repeated at least three times.

Measurement of electrolyte leakage
Electrolyte leakage was determined from the detached aerial

parts of salt-stressed plants with the indicated NaCl concentrations

at the 10th day after salt-treatment initiation. The detached plants

(n = 10) were individually placed in 50 ml tubes containing 15 ml

ddH2O and gently shaken for 2 h. Plants in tubes were then boiled

at 100uC for 40 min. When plants were cooled to room

temperature, the percentage of electrolyte leakage was determined

as the percentage of the conductivity before and after boiling of the

detached plants.

Determination of reactive oxygen species (ROS) levels
and enzyme activities

Superoxide radical and hydrogen peroxide (H2O2) were

detected as described previously by NBT (Sigma-Aldrich) and

DAB staining (Sigma-Aldrich), respectively [33]. Quantification of

Figure 4. Numbers of gene changed by Sha ecotype effect and salt effect.
doi:10.1371/journal.pone.0069036.g004

Figure 5. Numbers of overlapping transcripts changed between ecotypes and after salt treatment. Differentially expressed transcripts
were those with P,0.05 and fold change .2. Genes commonly regulated between ecotypes or by salt treatment were highlighted in dotted
rectangles and the detailed information of these genes was listed as in Table S1.
doi:10.1371/journal.pone.0069036.g005

Variation of Arabidopsis Salt Stress Tolerance
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H2O2 content was determined using the method described by Hu

et al. [34]. Two-week-old plants grown in soil were treated with 0,

100, 150 or 200 mM NaCl as described above. After 10 days,

whole plants (0.2 g, FW) were ground in liquid nitrogen to extract

total proteins and suspended in 500 ml PBS buffer (50 mM, pH

7.5), and then centrifuged at 12000 rpm at 4uC for 15 min. The

supernatant was recovered and immediately used for enzyme

activity measurement. Superoxide dismutase (SOD) activity was

determined using the WST (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-

(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay) meth-

od as described by Ukeda et al. [35]. One unit SOD was defined as

the amount of enzyme required to inhibit reduction rate of WST-1

by 50%. The activity of catalase (CAT) was analyzed as described

by Aebi [36]. One unit of CAT activity was defined as the amount

of enzyme necessary to catalize 1 mmol H2O2 in 1 min at 25uC
(pH 7.0). The absorbance of reaction buffer was analyzed at

520 nm. Experiments were repeated two times.

Plant growth and salt treatment for microarray
experiment

Seeds of three ecotypes were sown in MS plates as described

above with three replicates for each ecotype and salt combination.

Ten days after sowing, uniform seedlings of all ecotypes were

carefully transferred to MS plates with or without 100 mM NaCl.

Seedlings in MS plates without salt were used as controls. Plant

materials were collected for RNA extraction 4 days after

transferring at 2 h after dawn (the onset of illumination).

RNA extraction and array hybridization
Total RNA was extracted and purified from leaves of at least 30

seedlings per plate for each ecotype and salt combination using

QIAGEN-RNeasy Mini Kit (Qiagen, Valencia, CA, USA) accord-

ing to guidelines specified by the manufacturer. Two biological

replicates were prepared for each combination. Microarray analysis

was performed using Agilent-021169 Arabidopsis 4 Oligo Micro-

array (V4) (Probe Name version). In total 150 ng of total RNA was

used to prepare Cyanine-3 (Cy3) labeled probe with the help of the

low RNA input linear amplification/labeling kit (Agilent technol-

ogies). Labeled cRNA probes (1.65 mg) were fragmented using

fragmentation buffer (Agilent Technologies) and hybridized to the

Arabidopsis arrays according to manufacturer’s instructions.

Microarray data analysis
The arrays were scanned using the high resolution array

scanner (Agilent technologies). Array images were acquired with

Agilent’s dual-laser microarray scanner and signal intensities were

extracted from the scanned images with dedicated Agilent Feature

Extraction software (Agilent technologies). GeneSpring software

(Agilent technologies) was used to calculate the intensity ratios and

fold changes. All the genes with a P-value below 0.01 and a fold

change above 2 were chosen for further analysis. The normalized

microarray data have been submitted to the Gene Expression

Omnibus (GEO) database with accession number (GSE40940).

Genes significantly changed by at least one comparison (p-value

#0.05 and fold change .2.0) are listed in Table S1.

Biological enrichment and metabolic pathway analysis
All genes with P-value ,0.01 and fold change .2.0 were loaded

and annotated in the Classification SuperViewer Tool (http://bar.

utoronto.ca/ntools/cgi-bin/ntools_classification_superviewer.cgi)

[37]. MapMan was used as the classification source to assign

functional categories for each gene [38]. For GO term enrichment

analysis, all genes with P-value ,0.01 and fold change .2.0 were

loaded in ‘‘Term enrichment’’ using AmiGO software (http://

amigo.geneontology.org) [39]. Normalized frequency (NF) of each

functional category was calculated as following: NF = sample

frequency of each category in this experiment/background

frequency of each category in the Arabidopsis genome.

Figure 6. Cluster analyses of transcripts involved in specific pathway. Red, increase in transcript abundance (up-regulation); green,
decrease in transcript abundance (down-regulation); yellow, no change. The color scales were also indicated. Hierarchical cluster analysis was applied
for differentially expressed transcripts (P , 0.05 and log 2 fold change . 1 or , 21) with Cluster 3.0 software. The resulting tree figures were
displayed using the software package, Java TreeView.
doi:10.1371/journal.pone.0069036.g006

Variation of Arabidopsis Salt Stress Tolerance
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Cluster analysis
The data sets of specific genes were imported into the

CLUSTER program [40], http://bonsai.ims.u-tokyo.ac.jp/

m̃dehoon/software/cluster/). Hierarchical cluster analysis was

performed using an uncentered matrix and complete linkage

method. Resulting tree figures were displayed using the software

package, Java Treeview (http://jtreeview.sourceforge.net/).

Results

Effects of salt stress on seed germination of three
ecotypes

On the fifth Day After Germination (DAG), the Sha ecotype

exhibited less injury than Col and Ler in the presence of 150 mM

NaCl (Figure 1A). More than half of the Sha seeds (51.3%)

developed a radicle even in the presence of 200 mM NaCl at 3

DAG and 86% of the seeds developed green cotyledons at 5 DAG

in the presence of 150 mM NaCl, while less than 13% and 3% of

other two ecotypes (Col and Ler) seeds developed radicle and

green cotyledons, respectively (Figure 1B and C). In the presence

of 100 mM NaCl, 93% and 97% of Sha seeds developed radicles

at 2 DAG and green cotyledons at 5 DAG, respectively. In

comparison, only 36% and 20% of Ler seeds showed radicles and

green cotyledons at this stage. Col ecotype showed moderate

susceptibility to salt stress and the germination parameters were in

between Sha and Ler (Figure 1D and E). Sha ecotype also had

relatively longer primary roots and significantly more lateral roots

than those of Ler and Col (Figure S1).

Table 1. Pathway enrichment analysis showed several pathways were enriched by salinity and ecotype effects.

Groups MapMan Pathways Sha vs. Ler/Col Sha vs. Ler/Col

Salt vs. Control – NaCl + NaCl

NF1 P-value NF1 P-value NF1 P-value

1 hormone metabolism 2.51 0.0000 1.29 0.0320 1.50 0.0020

secondary metabolism 2.11 0.0000 1.74 0.0012 2.16 0.0000

Misc 1.87 0.0000 1.91 0.0000 1.64 0.0000

transport 1.72 0.0000 1.10 0.0480 1.14 0.0270

development 1.57 0.0000 1.39 0.0063 1.30 0.0082

TCA/org. transformation 1.40 0.0380 3.21 0.0008 3.04 0.0002

Stress 1.36 0.0000 2.22 0.0000 2.28 0.0000

2 metal handling 2.00 0.0001 – – 2.52 0.0018

nucleotide metabolism 0.73 0.0270 – – 1.66 0.0160

3 not assigned 0.87 0.0000 1.04 0.0098 1.01 0.0190

micro RNA, natural antisense etc 0.56 0.0000 1.70 0.0023 1.24 0.0410

signalling 1.32 0.0000 1.12 0.0340 0.97 0.0480

RNA 1.05 0.0072 0.78 0.0015 0.85 0.0048

4 fermentation 4.71 0.0000 – – – –

gluconeogenese/glyoxylate cycle 4.05 0.0002 – – – –

polyamine metabolism 3.70 0.0002 – – – –

Biodegradation of Xenobiotics 2.82 0.0003 – – – –

C1-metabolism 1.97 0.0082 – – – –

amino acid metabolism 1.81 0.0000 – – – –

minor CHO metabolism 1.70 0.0007 – – – –

tetrapyrrole synthesis 1.51 0.0500 – – – –

lipid metabolism 1.27 0.0038 – – – –

PS 2.68 0.0000 0.12 0.0025 0.27 0.0034

major CHO metabolism 2.13 0.0000 – – 0.00 0.0037

cell wall 1.89 0.0000 0.62 0.0180 – –

cell 0.96 0.0350 – – – –

mitochondrial electron transport/ATP synthesis 0.58 0.0072 – – – –

Co-factor and vitamine metabolism 0.24 0.0008 – – – –

5 protein 0.58 0.0000 0.64 0.0000 0.69 0.0000

DNA 0.17 0.0000 0.40 0.0000 0.32 0.0000

1NF: Normalized frequency = sample frequency of each category in this experiment/background frequency of each category in the Arabidopsis genome.
Genes with P-value ,0.05 and fold change .2.0 were loaded and annotated in the Classification SuperViewer Tool (http://bar.utoronto.ca/ntools/cgi-bin/ntools_
classification_superviewer.cgi). MapMan was used as the classification source to assign functional categories for each gene. Group 1: pathways enriched by both salt
and ecotype effects; Group 2: pathways enriched by salt effect and ecotype effect in the presence of salt; Group 3: pathways mainly enriched by salt effect; –: no
significant enrichment. The color scales indicated different normalized frequencies which were described in Materials and Methods.
doi:10.1371/journal.pone.0069036.t001
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Effects of salt stress on plant growth of three ecotypes
The survival rate of the Sha ecotype at various concentrations of

NaCl was significantly greater relative to the Ler and Col ecotypes

(Figure 2A). In the presence of 100 mM NaCl, growth of Sha was

less inhibited and 93% of the plants were alive at 14 days after

treatment in soil. After 200 mM NaCl treatment, 40% of the Sha

plants kept growing while all of the Ler plants died (Figure 2B),

resulting in significantly higher dry weight for the Sha ecotype

(Figure 2C). The electrolyte leakage test showed that Ler exhibited

significantly higher electrolyte leakage than Sha after 10 days salt

treatment, indicating Ler sustained less cell membrane stability

when compared to Sha (Figure 2D). Col ecotype showed moderate

susceptibility to long term salt treatment (Figure 2A–D). Taken

together, the enhanced salt tolerance of Sha can be attributed at

least in part to increased cell membrane integrity and stability.

Redox response after salt treatment
After 200 mM NaCl treatment, both superoxide radical and

hydrogen peroxide accumulated to a relatively higher content in

Ler than in Sha (Figure 3A). A quantification assay indicated that

hydrogen peroxide levels in Ler were about 2 folds higher than

those in Sha under the various salt conditions (Figure 3B). The

SOD and CAT activities in Sha were significantly greater than in

Ler after 10 days after salt treatments (Figure 3C and D). ROS

content and antioxidant enzyme activities in Col ecotype were in

between those of Sha and Ler ecotypes.

General transcriptomic responses by salinity effect and
ecotype effect

In total, the expression levels of 7209 genes were significantly

changed by either salt stress (referred to salt effect) or between Sha

and other two ecotypes (referred to Sha ecotype effect) (Table S1).

In the absence of salt, 4353 and 4867 genes showed differential

expression levels in the comparisons of Sha vs. Ler and Sha vs. Col,

respectively, while in the presence of salt, the differences between

Sha vs. Ler and Col were 3536 and 4639, respectively (Figure 4).

As reported by many groups, dehydration responsive element binding

(DREB)/C-repeat binding factors (CBF), LOW-TEMPERATURE-IN-

DUCED (LTI) genes, DROUGHT-INDUCED (DI) genes, COLD-

REGULATED (COR) genes, EARLY RESPONSIVE TO DEHYDRA-

TION (ERD) genes, LATE EMBRYOGEENESIS ABUNDANT (LEA)

genes and KIN1 gene were highly induced by abiotic stress treatments

[8,41,42]. In this study, expression levels of 20 DREB/CBF, LTI, DI,

COR, ERD, KIN genes were significantly up-regulated after salt

treatment (Figure S2). Moreover, ABA receptor genes (PYR/PYLs)

were generally down-regulated after salt stress treatment, while other

genes involved in ABA pathways, including PROTEIN PHOSPHA-

TASE 2C (PP2C), ABA RESPONSIVE ELEMENT-BINDING FAC-

TOR (ABF), ABA metabolism and ABA catabolism, were mainly up-

regulated in the presence of salt (Figure S3). These data agreed fairly

well with those of [41] that abiotic stress changed ABA pathway

related genes. These results provide support for the validity of the

data obtained by microarray analysis.

Table 2. Stress-related GO term enrichment analysis.

Groups GO Terms Salt vs. Control minus salt plus salt

Sha vs. other ecotypes Sha vs. other ecotypes

P-value NF1 P-value NF1 P-value NF1

1 GO:0006950response to stress 0.0000 1.59 0.0000 1.45 0.0236 1.24

GO:0006952defense response 0.0000 1.57 0.0000 1.75 0.0181 1.48

GO:0050896response to stimulus 0.0000 1.52 0.0040 1.26 – –

GO:0007154cell communication 0.0000 1.67 0.0330 1.46 – –

2 GO:0044277cell wall disassembly 0.0105 5.01 – – – –

GO:0006812cation transport 0.0000 2.05 – – – –

GO:0055080cation homeostasis 0.0008 1.98 – – – –

GO:0050801ion homeostasis 0.0006 1.92 – – – –

GO:0051049regulation of transport 0.0007 2.10 – – – –

GO:0043269regulation of ion transport 0.0002 2.24 – – – –

GO:0006820anion transport 0.0000 2.49 – – – –

GO:0010155regulation of proton transport 0.0139 2.54 – – – –

3 GO:0009628response to abiotic stimulus 0.0000 1.51 – – – –

GO:0009607response to biotic stimulus 0.0000 1.68 – – – –

GO:0009737response to abscisic acid stimulus 0.0000 2.31 – – – –

GO:0009269response to desiccation 0.0131 3.28 – – – –

GO:0009414response to water deprivation 0.0000 3.05 – – – –

GO:0009408response to heat 0.0000 2.17 – – – –

GO:0006979response to oxidative stress 0.0000 1.79 – – – –

GO:0009651response to salt stress 0.0000 1.72 – – – –

GO:0006970response to osmotic stress 0.0000 1.72 – – – –

GO:0009409response to cold 0.0000 1.72 – – – –

Term enrichment analysis was performed using AmiGO software.
1NF: Normalized frequency = sample frequency of each category in this experiment/background frequency of each category in the Arabidopsis genome.
doi:10.1371/journal.pone.0069036.t002
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Table 3. List of genes commonly regulated by salt treatment and in Sha ecotype.

locus – NaCl + NaCl Salt vs. Control MapMan BIN GeneName

Sha
vs.
Ler

Sha
vs.
Col

Sha
vs.
Ler

Sha
vs.
Col Col Ler Sha

A: Up-regulation by Sha effect and salt effect

AT2G02560 2.33 1.95 2.17 2.19 0.97 1.37 1.21 [17.2.2] hormone metabolism CAND1

AT5G43570 1.89 2.44 2.38 2.85 2.25 2.19 2.67 [20.1.7.6] stress.biotic PR protein

AT5G57260 2.16 2.68 2.67 3.57 0.81 1.19 1.70 [26.10] misc.cytochrome P450 CYP71B10

AT1G73010 1.14 1.31 1.00 1.28 3.49 3.60 3.45 [26.13] misc.acid and phosphatases phosphatase

AT4G24890 3.99 3.70 3.52 3.75 1.02 1.54 1.07 [26.13] misc.acid and phosphatases acid phosphatase

AT5G62080 1.96 2.31 1.11 1.50 2.26 2.31 1.46 [26.21] misc.protease inhibitor protease inhibitor

AT2G46880 4.25 1.68 1.33 1.94 1.60 4.79 1.86 [26.27] misc.phosphoesterase PAP14

AT1G59670 2.34 2.93 3.36 3.04 3.33 2.43 3.45 [26.9] misc.glutathione S transferases ATGSTU15

AT4G16160 1.99 2.52 1.00 2.14 3.74 4.34 3.35 [29.3.2] protein.targeting.mitochondria ATOEP16-2

AT1G53080 1.73 1.87 1.29 1.20 5.91 5.69 5.25 [29.4] protein.postranslational mod. lectin

AT3G10510 2.89 1.71 2.19 1.55 3.21 3.74 3.05 [29.5.11.4.3.2] protein.degradation F-box

AT1G67000 1.50 2.72 1.66 1.90 1.95 0.99 1.14 [30.2.20] signalling.receptor kinases protein kinase

AT3G18610 1.12 1.42 1.17 2.28 1.55 2.36 2.40 [30.5] signalling.G-proteins nucleolin

AT2G25340 1.56 2.64 2.01 3.14 2.83 2.88 3.32 [31.4] cell.vesicle transport ATVAMP712

AT2G41260 5.55 2.70 1.92 4.02 20.45 4.50 0.87 [33.99] development.unspecified LEA

AT1G04560 2.31 2.55 2.31 2.67 6.06 6.17 6.17 [34.99] transport.misc AWPM-19-like

AT5G55070 1.30 1.22 1.42 2.11 0.81 1.57 1.69 [8.1.5] TCA/org. transformation.TCA dehydrogenase

B: Down-regulation by Sha effect and salt effect

AT2G15050 23.34 23.97 23.63 24.07 21.13 20.94 21.23 [11.6] lipid metabolism LTP; lipid binding

AT4G15340 21.01 23.37 22.40 23.05 22.60 20.88 22.27 [16.1.5.1003] secondary metabolism ATPEN1

AT1G34060 22.50 21.45 21.25 22.38 20.44 22.63 21.38 [16.5.99.1] secondary metabolism alliinase

AT1G34490 23.10 21.32 23.44 22.65 22.98 23.97 24.32 [16.7.1001] secondary metabolism wax synthase

AT5G18020 22.51 22.71 21.71 22.83 22.69 23.61 22.81 [17.2.3] hormone metabolism.auxin auxin-responsive

AT1G56680 21.41 21.21 22.34 22.60 22.91 23.37 24.30 [20.1.1001] stress.biotic glycoside hydrolase

AT2G15080 24.48 23.89 23.83 23.51 23.00 23.28 22.62 [20.1.7] stress.biotic.PR-proteins AtRLP19

AT4G19530 21.38 21.81 21.76 22.48 21.45 21.75 22.13 [20.1.7] stress.biotic.PR-proteins disease resistance

AT3G46940 21.19 21.07 22.13 21.96 21.20 21.14 22.09 [23.5.5] nucleotide metabolism nucleotidohydrolase

AT5G03350 23.95 22.65 25.67 24.46 22.21 22.30 24.02 [26.16] misc.myrosinases lectin

AT1G54000 21.15 21.12 21.75 21.40 21.27 20.96 21.56 [26.16] misc.myrosinases myrosinase

AT3G43670 21.47 21.25 21.97 22.75 20.35 21.35 21.85 [26.7] misc.oxidases 2 copper, flavone amine oxidase

AT1G63100 21.73 21.46 21.59 21.48 21.46 21.62 21.48 [27.3.21] RNA.transcription regulation scarecrow TF

AT3G27920 21.06 22.00 21.82 22.00 21.75 20.99 21.75 [27.3.25] RNA.transcription regulation MYB

AT1G26680 21.64 22.24 21.63 22.36 21.06 21.19 21.19 [27.3.41] RNA.transcription regulation B3 TF

AT5G10570 22.39 21.21 22.09 21.38 21.86 22.34 22.03 [27.3.6] RNA.transcription regulation Bhlh

AT5G44560 21.06 21.63 21.84 21.70 21.05 20.33 21.12 [27.3.71] RNA.transcription regulation VPS2.2

AT1G03420 21.36 22.60 22.13 23.44 20.93 21.00 21.77 [28.1.1] DNA.transposase oxidoreductase

AT5G44635 21.19 21.85 21.50 22.15 21.29 21.28 21.60 [28.1] DNA.synthesis MCM protein

AT1G56720 21.16 21.53 21.14 21.84 20.84 21.17 21.15 [29.4.1.55] protein.kinase protein kinase

AT3G07070 21.66 21.53 23.23 22.78 22.57 22.24 23.82 [29.4.1.57] protein.kinase protein kinase

AT1G48260 23.59 24.02 24.27 23.56 21.55 20.40 21.09 [29.4] protein.postranslat. modification CIPK17

AT4G20430 21.53 21.65 21.69 22.22 20.93 21.34 21.50 [29.5.1] protein.degradation.subtilases subtilase

AT3G44120 21.73 21.43 21.15 21.82 21.07 22.03 21.45 [29.5.11] protein.ubiquitin.E3 F-box

AT3G51350 21.89 21.82 22.53 22.60 23.01 23.16 23.79 [29.5.4] protein.degradation aspartyl protease

AT4G39710 23.05 22.98 23.15 23.63 23.51 24.06 24.16 [29.6] protein.folding immunophilin

AT3G50840 21.95 21.64 22.20 22.67 21.38 22.17 22.42 [30.11] signalling.light NPH3protein

AT5G39030 23.93 23.09 23.67 22.61 21.32 21.09 20.83 [30.2.16] signalling.receptor kinases protein kinase
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Table 3. Cont.

locus – NaCl + NaCl Salt vs. Control MapMan BIN GeneName

Sha
vs.
Ler

Sha
vs.
Col

Sha
vs.
Ler

Sha
vs.
Col Col Ler Sha

AT1G11280 24.18 24.19 24.34 24.74 20.73 21.12 21.28 [30.2.24] signalling.receptor kinases protein kinase

AT5G49760 21.64 21.28 21.58 21.22 21.04 21.04 20.98 [30.2.8.1] signalling.receptor kinases protein kinase

AT1G51805 21.75 22.30 21.13 22.67 21.26 22.24 21.62 [30.2.99] signalling.receptor kinases protein kinase

AT3G47220 21.03 21.35 23.14 23.20 21.02 20.76 22.87 [30.4.4] signalling.phosphinositides phospholipase C

AT5G02370 21.28 21.36 21.91 21.75 21.61 21.36 22.00 [31.1] cell.organisation kinesin

AT1G73690 21.16 21.25 22.42 21.92 21.01 20.42 21.68 [31.2] cell.division CDKD1;1

AT3G62030 21.64 21.52 21.14 21.24 21.03 21.25 20.75 [31.3.1] cell.cycle. isomerase ROC4

AT2G26760 21.28 21.46 21.73 21.72 21.52 21.33 21.77 [31.3] cell.cycle CYCB1;4

AT3G05480 21.51 22.34 21.80 22.51 21.18 21.06 21.35 [31.3] cell.cycle RAD9

AT1G66725 22.70 21.81 22.04 21.95 20.80 21.60 -0.93 [32] micro RNA, natural antisense etc miscRNA

AT4G22233 21.87 22.39 21.27 22.91 20.65 21.76 21.16 [32] micro RNA, natural antisense etc miscRNA

AT2G21045 23.05 22.63 22.95 22.33 21.66 21.46 21.36 [33.99] development.unspecified hypothetical protein

C: Up-regulation by Sha effect and dow-regulation by salt effect

AT1G26250 1.70 1.98 1.02 1.31 23.10 23.10 23.78 [10.5.3] cell wall proteins.LRR extensin

AT5G23980 4.34 1.18 3.87 2.32 24.44 22.82 23.30 [15.1] metal handling.acquisition oxidase

AT1G77530 1.59 1.70 1.33 1.01 23.70 24.14 24.40 [16.2] secondary metabolism methyltransferase

AT5G63595 1.92 2.13 1.43 1.75 21.67 21.55 22.04 [16.8.4] secondary metabolism flavonol synthase

AT5G38020 2.66 1.84 2.64 1.38 20.90 21.34 21.36 [17.8] hormone.salicylic acid methyltransferase

AT2G21550 2.99 1.57 3.67 1.97 21.47 21.76 21.07 [25] C1-metabolism DHFR-TS

AT5G38540 5.52 3.08 4.91 3.73 23.81 22.55 23.16 [26.16] misc.myrosinases jacalin lectin

AT2G19910 3.03 1.56 2.66 1.36 21.47 21.30 21.67 [27.2] RNA.transcription RNA polymerase

AT2G19410 1.18 1.03 1.17 1.03 22.43 22.42 22.43 [29.4.1] protein.kinase protein kinase

AT2G03200 1.34 1.08 1.42 1.03 21.58 21.71 21.63 [29.5.4] protein.degradation aspartyl protease

AT5G59670 1.17 1.82 1.96 1.35 21.97 23.24 22.44 [30.2.1] signalling.receptor kinase protein kinase

AT3G45680 1.62 1.54 2.12 1.44 21.06 21.67 21.17 [34.13] transport.peptides transport

D: Down-regulation by Sha effect and up-regulation by salt effect

AT4G08870 22.30 22.40 22.44 22.29 1.87 2.12 1.98 [13.2] amino acid.degradation arginase

AT1G61120 24.23 21.45 25.14 22.52 5.12 4.96 4.05 [16.1] secondary metabolism terpene synthase

AT1G52040 21.49 21.84 21.88 22.50 3.32 3.04 2.66 [16.5] secondary metabolism MBP1

AT4G22870 21.16 22.38 21.13 21.82 2.09 2.62 2.65 [16.8] secondary metabolism dioxygenase

AT5G42800 22.48 22.46 22.09 21.99 2.69 2.77 3.16 [16.8] secondary metabolism DFR

AT5G54190 27.06 24.45 27.09 23.53 1.48 2.43 2.41 [19.14] tetrapyrrole synthesis oxidoreductase

AT1G45616 24.96 26.17 23.36 24.93 3.99 3.63 5.24 [20.1.1001] stress.biotic AtRLP6

AT3G44670 23.06 24.43 21.46 23.31 1.10 0.61 2.22 [20.1.2] stress.biotic.receptors receptor

AT3G59930 22.43 23.40 21.45 21.20 1.76 2.98 3.97 [20.1.7] stress.biotic.PR-proteins hypothetical protein

AT5G33355 22.67 23.45 21.33 21.16 1.81 2.77 4.10 [20.1.7] stress.biotic.PR-proteins hypothetical protein

AT4G15910 23.06 22.57 21.79 21.63 2.60 2.27 3.54 [20.2.3] stress.abiotic.drought/salt ATDI21

AT4G14090 21.25 22.04 21.34 22.02 2.47 2.58 2.49 [26.2] misc.UDPG transferases glucosyl transferase

AT2G39030 23.24 22.00 21.25 21.04 8.02 6.99 8.98 [26.24] misc.N-acetyltransferase acetyltransferase

AT2G43660 21.66 23.01 21.25 21.42 2.27 3.46 3.87 [26.4] misc.beta 1,3 glucan hydrolases glycosyl hydrolase

AT1G62580 24.03 23.20 24.91 25.71 4.63 3.00 2.12 [26.7] misc.oxidases – copper, flavone monooxygenase

AT2G23620 22.85 21.17 22.75 21.34 1.21 0.95 1.04 [26.8] misc.nitrilases, *nitrile lyase hydrolase

AT3G01540 21.48 21.61 21.77 21.49 0.89 1.31 1.02 [27.1.2] RNA.RNA helicase DRH1

AT4G12350 23.56 23.63 23.41 22.55 1.45 2.38 2.53 [27.3] RNA.regulation of transcription MYB42

AT5G46830 22.66 23.86 21.60 22.61 2.12 2.31 3.37 [27.3] RNA.regulation of transcription bHLH

AT4G20970 21.75 22.13 21.04 21.55 3.25 3.14 3.84 [27.3] RNA.regulation of transcription bHLH

AT1G51700 21.22 21.33 21.21 21.24 1.59 1.68 1.69 [27.3] RNA.regulation of transcription ADOF1
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Cluster and overlap analyses revealed common and
contrasting changes by salinity and among ecotypes

In total, 1368 and 1905 genes were commonly regulated by Sha

vs. Ler and Sha vs. Col in the absence and presence of salt,

respectively (Figure 5A and B). Cluster analysis revealed that 52–

65% of salt stress affected genes was in common in three ecotypes

(Figure S4). Among them, 2549 and 2793 differentially expressed

genes were co-regulated by salt in all three ecotypes (Figure 5C

and D), indicating common changes after salt stress treatment.

Many genes associated with cell walls, photosynthesis (PS),

auxin (Figure 6A), secondary metabolism, and biotic stress

(Figure S5) were significantly down-regulated after salt treatment,

but there were no significant changes between Sha and the other

two ecotypes (Figure 6A). In addition, salt treatment also

extensively up-regulated genes involved in ABA pathway, carbo-

hydrate metabolism (CHO), ethylene and transport for all three

ecotypes (Figure S5). In contrast, expression levels of transposable

element genes (TE), microRNA and antisense sequence were

significantly changed between Sha and other two ecotypes, and

only slightly by salinity (Figure 6B; Table S1). F-box genes, heat

shock transcription factors and MADS box transcription factors

were also extensively changed between Sha and other two

ecotypes (Figure 6B).

Pathway enrichment analyses of genes changed by Sha
ecotype effect and salt effect

Several metabolic pathways such as hormone metabolism,

secondary metabolism, TCA, development, and stress (Table 1,

Group 1), and GO terms involved in defense and stress responses

(Table 2, Group 1) were enriched by both salt effect and Sha

ecotype effect, indicating the preconditioned stress tolerance in

Sha ecotype. Salt stress treatment extensively changed expression

levels of many other genes, resulting in enrichment of related

pathways (fermentation, glyoxylate cycle, polyamine metabolism,

metal handling, etc) (Table 1, Group 4) and GO terms (regulation

of transport and response to most other abiotic stresses) (Table 2,

Group 2-3). Pathways involving in microRNA and natural

antisense (Table 1, Group 3) were over-represented between the

comparison of Sha and other two ecotypes.

Specific genes regulated by Sha ecotype effect and salt
effect

In total, 98 of the 218 genes which were differentially expressed

by Sha relative to both Ler and Col also showed significantly

expression changes after salt treatment, including 29 up-regulated

genes and 69 down-regulated genes (Table 3). This set of genes

mainly functions in secondary metabolism, hormone metabolism,

regulation of transcription, protein metabolism, and signaling

(Table 3A, B). There were several genes with increased or

decreased expression in Sha relative to Ler and Col exhibited the

opposite trend in response to salt (Table 3C and D). For example,

one extensin gene (AT1G26250), one oxidase gene (AT5G23980),

and one methyltransferase (AT1G77530) were down-regulated

under salt stress condition, but exhibited 2 to 16-fold increases in

transcript abundance in Sha in relative to the other two ecotypes

(Table 3C). Meanwhile, several genes with annotated function in

secondary metabolism, biotic stress, and transcriptional regulation

were up-regulated by salt stress, but down-regulated in Sha. It’s

worth mentioning that one oxidoreductase gene (AT5G54190)

and one transposase gene (AT3G02515) were up-regulated by salt

2 to 4-fold, but showed up to 1038-fold decreases in Sha in

comparison to Ler and Col (Table 3D).

Discussion

In this work, natural variations in salt tolerance among Sha, Ler

and Col ecotypes were analyzed based on their responses to salt

Table 3. Cont.

locus – NaCl + NaCl Salt vs. Control MapMan BIN GeneName

Sha
vs.
Ler

Sha
vs.
Col

Sha
vs.
Ler

Sha
vs.
Col Col Ler Sha

AT3G02515 ### 25.22 28.26 24.02 1.00 0.44 2.20 [28.1] DNA.transposase transposase

AT5G43580 23.89 22.56 22.52 21.77 1.74 1.16 2.53 [29.5] protein.degradation peptidase inhibitor

AT1G66830 21.60 21.26 21.96 21.38 2.79 3.04 2.68 [30.2.3] signalling.receptor kinases protein kinase

AT1G53160 21.14 21.89 22.32 22.27 4.47 5.27 4.09 [33.3] development.SPL SPL4

AT3G54150 22.74 21.48 22.29 21.02 1.74 1.75 2.20 [33.99] development.unspecified embryo-abundant

AT3G49620 21.20 21.10 24.38 21.36 2.02 4.94 1.76 [33.99] development.unspecified DIN11

AT4G18210 22.28 21.65 22.63 22.21 1.60 1.39 1.05 [34.10] transport.nucleotides ATPUP10

AT2G04070 24.29 22.59 26.15 24.36 3.69 3.78 1.92 [34.99] transport.misc antiporter

Black background means an increase (denoted by up-regulation in the heading) in transcript abundance, and grey background means a decrease (denoted by the
heading down-regulation) in transcript abundance. Fold changes are log 2 values.
doi:10.1371/journal.pone.0069036.t003

Figure 7. Model of salt effect and ecotype effects.
doi:10.1371/journal.pone.0069036.g007
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treatment in seed germination, root growth, and performance of

adult plants in soil (Figure 1–3; Figure S1). All of these results were

consistent with previous studies where Ler and Col were observed

to be relatively salt-sensitive, but Sha was salt-tolerant [14,15,29].

Abiotic stresses cause oxidative stress via rapid and excessive

production of reactive oxygen species (ROS), which can lead to

oxidative damages [43,44]. To scavenge the over-production of

ROS, plants have developed complex antioxidant defense systems,

including antioxidant enzymes like SOD, CAT, and POD.

Physiological analyses in this study indicated that salt tolerant

Sha ecotype exhibited higher antioxidant enzyme activities and

thus less accumulation of ROS than those of other two ecotypes

(Figure 3). EL, as one indicator of cell membrane stability, has

been widely used to evaluate the extent of cell injury when

subjected to various environmental stresses [26]. As the most salt

susceptible ecotype, Ler showed highest EL when compared to

that in Sha and Col after salt treatment (Figure 2D), indicating

that Ler suffered the most severe cell injury. This result was

consistent with highest accumulation of ROS and lowest survival

in Ler ecotype (Figure 2B).

To date, transcriptional level changes involved in salt tolerant

Sha ecotypes were still largely unknown.Our study differs from

prior transcriptome analyses in two important ways that are worth

considering. First, two salt susceptible Arabidopsis ecotypes (Ler

and Col) besides salt tolerant Sha ecotype were used in this study

to narrow down the gene list for characterization of salt stress

responsive genes in the Sha ecotype. Second, Agilent-021169

Arabidopsis 4 Oligo Microarray were used because many genes

were missed in the widely used Affymetrix ATH1 array (like ABA

receptors PYL10-13).

The transcriptome data here revealed that half of salinity

affected genes were commonly up-regulated or down-regulated in

all three ecotypes (Figure 5C). In a previous report, we also

observed that the majority of salt affected genes were in common

between Wassilewskija (Ws) and Col ecotypes [41]. These stress

inducible genes played either protective (positive) role or damaging

(negative) role and led to abiotic stress adaptation in plants. To

characterize a single protective or damaging gene is difficult

because overexpression of several genes increases plant stress

tolerance but inhibits plant growth as well [41,42].

Pathway enrichment analysis is an effective approach to

characterize ‘‘gene networks’’ after treatment. We observed that

redox related genes encoding thioredoxin, ascorbate and gluta-

thione and glutaredoxins were mainly repressed by salinity

(Table S1), in which caused increased ROS levels in tested

ecotypes (Figure 3A). In addition, our results indicated that

fermentation, photosynthesis, polyamine metabolism, secondary

metabolism, hormone metabolism and stress related pathways

were over-represented after salinity treatment (Table 1). Many

genes involved in light reactions, photorespiration and the Calvin

cycle were uniformly down-regulated after salt stress treatments

(Table S1). Increase of fermentation related genes (encoding

aldehyde dehydrogenase, pyruvate decarboxylase-2, and alcohol

dehydrogenase) and inhibition of photosynthesis related genes

(encoding PSI and PS II polypeptide subunits, Calvin cycle related

proteins) (Table S1) by salt stress might be involved in inhibition of

plant growth and development.

Further overlap analysis showed that about 30% genes were

commonly regulated by both Sha vs. Ler and Sha vs. Col

(Figure 5A and B; Figure S4). These results confirmed that

extensive transcriptional diversity exists among Arabidopsis

ecotypes. Interestingly, expression levels of many transposable

element (TE) and microRNA (miRNA) were significantly changed

in the comparisons of Sha vs. Ler and Sha vs. Col for up to 1351-

fold increases (AT5G27345) and 1629-fold decreases

(AT2G13665) (Figure 6B; Table S2). TEs are referred as

‘‘controlling elements’’ in plants [45] and transposon activation

in response to abiotic stress has been reported [46,47]. miRNAs

play essential roles in regulating plant stress responses [48].

Therefore, extensive changes of expression of TEs and miRNAs in

the comparisons of Sha vs. Ler and Sha vs. Col here indicated that

these genes could be involved in salt tolerance of Sha ecotype.

There also were extensive differences in gene expression

between Sha and the other two ecotypes for transcription factors

(TFs), including heat shock TFs (HSF) and MADS box TFs

(Figure 6B). It has been reported that the HSF function as

transcriptional activators and directly regulate the expression of

various abiotic stress responsive genes [49,50]. Arabidopsis with

overexpression of AtHSFA2 and transgenic tobacco with sunflower

HSFA9 conferred increased tolerance to severe environmental

stresses [50,51]. Plant MADS-box genes were involved in

flowering-time control, reproductive organ development, and

vegetative growth [52,53]. In this study, MADS-box genes were

mainly down-regulated when comparing Sha to other two

ecotypes, indicating these genes might also function in stress

responses. Moreover, several F-box genes were changed in the

comparisons of Sha vs. Ler and Sha vs. Col (Figure 6B). In plants,

many F-box proteins are targets of microRNAs [54] which showed

differential expression between Sha and the other two ecotypes

(Figure 6B). One F-box protein, TIR1, is actually an auxin

receptor [55,56]. These changes in the Sha ecotype might

contribute to enhanced salt tolerance relative to Col and Ler.

Transcript levels commonly or contrastingly changed by both

salt and the Sha ecotype were of particular interest (Table 3).

Further studies are needed to understand the detailed functions of

genes that are differentially expressed between Sha and the other

two ecotypes. In summary, the Sha ecotype exhibited increased

salt tolerance when compared to Ler and Col. One possible model

related to salt tolerance of Sha is depicted in Figure 7. Genes

involved in CHO metabolism, photosynthesis, cell wall, polyamine

and fermentation were extensively changed by salinity effect, while

TEs and miRNA related genes were mainly related to the Sha

ecotype effect. Other pathways including hormone metabolism,

secondary metabolism, TCA, transcriptional factors, transport and

development were changed by both salinity and Sha ecotype

effects (Figure 7). Therefore, the Sha ecotype showed increased

tolerance to stress and defense response, while salt treatment

induced tolerance to other abiotic stresses like heat, cold, drought

and salt (Table 2). Our results suggest that the Sha ecotype is

possibly preconditioned to abiotic stress when compared to Ler

and Col through regulation of signaling pathways and stress

responsive gene expression. Further studies about the detailed

functions of differentially expressed genes between Sha and other

two ecotypes are needed.

Supporting Information

Figure S1 Effect of salt treatment on root growth of Sha, Col

and Ler ecotypes.

(TIF)

Figure S2 Expression changes of stress responsive genes by salt

effect and Sha ecotype effect.

(TIF)

Figure S3 Cluster analyses of genes involved in ABA signaling

transduction pathway.

(TIF)
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Figure S4 Cluster analyses of all differentially expressed genes

by salt treatment or among ecotypes.

(TIF)

Figure S5 Cluster analyses of specific pathway related genes.

(TIF)

Table S1 Total gene lists differentially expressed by salt

treatment or among ecotypes.

(XLSX)

Table S2 Transposable element, miroRNA and histone related

transcripts differentially expressed by salt treatment or among

ecotypes.

(XLSX)
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