167 research outputs found

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems

    Direct competition results from strong competiton for limited resource

    Get PDF
    We study a model of competition for resource through a chemostat-type model where species consume the common resource that is constantly supplied. We assume that the species and resources are characterized by a continuous trait. As already proved, this model, although more complicated than the usual Lotka-Volterra direct competition model, describes competitive interactions leading to concentrated distributions of species in continuous trait space. Here we assume a very fast dynamics for the supply of the resource and a fast dynamics for death and uptake rates. In this regime we show that factors that are independent of the resource competition become as important as the competition efficiency and that the direct competition model is a good approximation of the chemostat. Assuming these two timescales allows us to establish a mathematically rigorous proof showing that our resource-competition model with continuous traits converges to a direct competition model. We also show that the two timescales assumption is required to mathematically justify the corresponding classic result on a model consisting of only finite number of species and resources (MacArthur, R. Theor. Popul. Biol. 1970:1, 1-11). This is performed through asymptotic analysis, introducing different scales for the resource renewal rate and the uptake rate. The mathematical difficulty relies in a possible initial layer for the resource dynamics. The chemostat model comes with a global convex Lyapunov functional. We show that the particular form of the competition kernel derived from the uptake kernel, satisfies a positivity property which is known to be necessary for the direct competition model to enjoy the related Lyapunov functional

    Croissance du patudo (Thunnus obesus) de l'Océan Atlantique intertropical oriental

    Get PDF
    The growth of big eye tuna (Thunnus obesus) in the Eastern Tropical Atlantic Ocean was studied using Petersen's method, by the analysis of the length frequency data of the F.I.S. (French-Ivorian-Senegalese) surface tuna fleet from 1969 to 1977. The results are in agreement with a previous study by Champagnat and Pianet (1973) and with observations made in the Pacific Ocean

    A simple mathematical model of gradual Darwinian evolution: Emergence of a Gaussian trait distribution in adaptation along a fitness gradient

    Get PDF
    We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.Comment: 21 pages, 2 figures, as accepted to J Math Biol 2013/03/1

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-

    Stochasticity in the adaptive dynamics of evolution: The bare bones

    Get PDF
    First a population model with one single type of individuals is considered. Individuals reproduce asexually by splitting into two, with a population-size-dependent probability. Population extinction, growth and persistence are studied. Subsequently the results are extended to such a population with two competing morphs and are applied to a simple model, where morphs arise through mutation. The movement in the trait space of a monomorphic population and its possible branching into polymorphism are discussed. This is a first report. It purports to display the basic conceptual structure of a simple exact probabilistic formulation of adaptive dynamics

    The frequency-dependent Wright-Fisher model: diffusive and non-diffusive approximations

    Get PDF
    We study a class of processes that are akin to the Wright-Fisher model, with transition probabilities weighted in terms of the frequency-dependent fitness of the population types. By considering an approximate weak formulation of the discrete problem, we are able to derive a corresponding continuous weak formulation for the probability density. Therefore, we obtain a family of partial differential equations (PDE) for the evolution of the probability density, and which will be an approximation of the discrete process in the joint large population, small time-steps and weak selection limit. If the fitness functions are sufficiently regular, we can recast the weak formulation in a more standard formulation, without any boundary conditions, but supplemented by a number of conservation laws. The equations in this family can be purely diffusive, purely hyperbolic or of convection-diffusion type, with frequency dependent convection. The particular outcome will depend on the assumed scalings. The diffusive equations are of the degenerate type; using a duality approach, we also obtain a frequency dependent version of the Kimura equation without any further assumptions. We also show that the convective approximation is related to the replicator dynamics and provide some estimate of how accurate is the convective approximation, with respect to the convective-diffusion approximation. In particular, we show that the mode, but not the expected value, of the probability distribution is modelled by the replicator dynamics. Some numerical simulations that illustrate the results are also presented

    Patient/family views on data sharing in rare diseases: study in the European LeukoTreat project.: Survey assessing data sharing in leukodystrophies

    Get PDF
    International audienceThe purpose of this study was to explore patient and family views on the sharing of their medical data in the context of compiling a European leukodystrophies database. A survey questionnaire was delivered with help from referral centers and the European Leukodystrophies Association, and the questionnaires returned were both quantitatively and qualitatively analyzed. This study found that patients/families were strongly in favor of participating. Patients/families hold great hope and trust in the development of this type of research. They have a strong need for information and transparency on database governance, the conditions framing access to data, all research conducted, partnerships with the pharmaceutical industry, and they also need access to results. Our findings bring ethics-driven arguments for a process combining initial broad consent with ongoing information. On both, we propose key item-deliverables to database participants
    corecore