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Abstract We study a class of processes that are akin to the Wright-Fisher model,
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the population types. By considering an approximate weak formulation of the discrete
problem, we are able to derive a corresponding continuous weak formulation for the
probability density. Therefore, we obtain a family of partial differential equations
(PDE) for the evolution of the probability density, and which will be an approxima-
tion of the discrete process in the joint large population, small time-steps and weak
selection limit. If the fitness functions are sufficiently regular, we can recast the weak
formulation in a more standard formulation, without any boundary conditions, but
supplemented by a number of conservation laws. The equations in this family can be
purely diffusive, purely hyperbolic or of convection-diffusion type, with frequency
dependent convection. The particular outcome will depend on the assumed scalings.
The diffusive equations are of the degenerate type; using a duality approach, we also
obtain a frequency dependent version of the Kimura equation without any further as-
sumptions. We also show that the convective approximation is related to the replicator
dynamics and provide some estimate of how accurate is the convective approxima-
tion, with respect to the convective-diffusion approximation. In particular, we show
that the mode, but not the expected value, of the probability distribution is modelled
by the replicator dynamics. Some numerical simulations that illustrate the results are
also presented.
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1 Introduction

Evolution is naturally a multiscale phenomenon (Keller 1999; Metz 2011). The choice
of right scale to describe a particular problem has as much art as science. For some
populations (e.g, with non overlapping generations) a discrete time provides adequate
description; for different examples, this is excessively simplifying. Large populations
can be described as infinite (in order to use differential equations, for example), but
this imposes limitations in the time validity of the model (Chalub and Souza 2009a).
On the other hand, some finite population effects, like, for example, the bottleneck
effect, will be missing in any description relying in infinite populations (Hartle and
Clark 2007).

In this vein, diffusion approximations, frequently used for large populations and
long time scales, enjoy a long tradition in population genetics. This tradition dates
back as early as the work by Feller (1951) and references there in. In particular,
diffusion approximations were implicitly used in the pioneering works of Wright
(1938, 1937) and Fisher (1922, 1930). These efforts have been further developed in
a number of directions as, for instance, in the studies on multispecies models in Sato
(1976, 1983); see also the review in Sato (1978). Subsequently, Ethier and Kurtz
(1986) systematically studied the approximation of finite Markov chain models by
diffusions. In particular, they showed the validity of a diffusion approximation to a
multidimensional Wright-Fisher model, in the regime of weak selection, and linear
fitness. This led to a notable progress in diffusion theory, as reported for instance in
(Ethier and Kurtz 1986; Stroock and Varandhan 1997). This considerable progress,
in turn, led to a large use of diffusion theory in population genetics, which can be
verified in contemporary introductions to the subject (see Ewens 2004; Etheridge
2011).

There is also a more heuristic approach, called the Kramers-Moyal expansion,
where the kernel of the master equation of the stochastic process is fully expanded in
a series. The diffusion approximation can be viewed as a Kramers-Moyal expansion
truncated at second order. Although it is commonly claimed that the full expansion
is needed in order to obtain a continuous approximation of discrete processes, it is
known that under various conditions discrete Markov chains can be approximated
by diffusions; cf. Ethier and Kurtz (1986) and Stroock and Varandhan (1997) for
instance. In this work, we shall show that under a number of conditions similar results
hold for the discrete processes considered. See (van Kampen 1981) for a discussion
about this and other techniques for continuous approximations of discrete processes.

As observed above, results along similar lines had been obtained earlier by a
number of authors (Feller 1951; Ethier and Kurtz 1986; Ewens 2004). These works
approach the problem mostly within a probabilistic framework, while here we take a
pure analytical setting, and this brings two immediate consequences: firstly, we are
able to directly derive a weak formulation for the forward Kolmogorov equation, as-
suming only continuity of the fitness functions in contrast to the weak formulation for
the backward problem for Feller processes; see Rogers and Williams (2000a,b) . The
second, and possibly most important consequence, is that we are able to deal with a
variety of scalings for the evolution problem. This yields a full family of evolution
problems: genetic-drift dominated evolution, which is described by a diffusion equa-
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tion; selection dominated evolution, which is governed by a hyperbolic equation; and
an evolutionary dynamics, where the two forces are balanced, which is governed by
a convection-diffusion equation that we term replicator-diffusion.

If we assume some more regularity of the fitness functions, we can then recast
the weak formulation in a strong formulation. In this case, we cannot impose any
boundary conditions, but we must supplement it by a number of conservation laws,
namely that the probability of fixation of each type for a given probability density of
population, in any time, must be the same as in the initial time. The conservation laws
are used to circumvent the impossibility of imposing boundary conditions when the
boundaries are absorbing.

Furthermore, by a duality argument we obtain the backward equation formula-
tion. For the particular case of linear fitness and balanced scalings, we then recover
the classical result by Ethier and Kurtz (1986). Additionally, by an appropriate combi-
nation of the weak and strong formulations, we are able to give a complete description
of the forward solution.

A complimentary approach to the study of evolution, based on evolutionary game
theory, has also been developed (cf. Smith 1982) with conclusions that are not always
compatible with results from diffusion theory. As an example, diffusion models with-
out mutation lead to the fixation of a homogeneous population, while frequency de-
pendent models associated to the replicator dynamics1 may lead to stable mixed pop-
ulations. For an introduction to evolutionary game theory and replicator dynamics, we
refer the reader to Hofbauer and Sigmund (1998) and Weibull (1995). The replicator
equation was also modified to introduce stochasticity at population level (Fudenberg
and Harris 1992; Foster and Young 1990). Relations between the matching scheme
in a population and the deterministic approximation of its stochastic evolution are
studied in (Boylan 1992, 1995).

Consistent interaction among these two modelling schools have been attempted
by a number of authors, with different degrees of success (see Traulsen et al. 2005;
Lessard and Ladret 2007; Lessard 2005; McKane and Waxman 2007; Waxman 2011;
Champagnat et al. 2006, 2008; Fournier and Méléard 2004; Molzon 2009; Benaim
and Weibull 2003; Corradi and Sarin 2000; Traulsen et al. 2012). We will show, as in
many of these works, that both descriptions — the one based on the diffusion approx-
imation and the one based on the replicator dynamics — are correct as models for the
evolutionary dynamics of a given trait, but in different scalings. As a by product, we
will provide a generalisation of the Kimura equation valid for an arbitrary number of
types and general fitness functions. The long time asymptotics of both descriptions
will suggest that the replicator equation is a model with limited time validity, given a
certain maximum admissible error. Such a limitation is to be naturally anticipated on
the grounds that the diffusion process will be eventually absorbed, while the replica-
tion dynamics might converge to an equilibrium in the interior. We also confirm that
the solution of the replicator equation indicates the most probable state (mode) of
the population, conditional on not have been absorbed. Hence, it does not necessarily
indicate the expected value of the trait.

1 In this work, we will use the expressions “replicator dynamics”, “replicator equation” and “replicator
system” indistinctly.
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The work presented here is a development of earlier work in (Chalub and Souza
2009a,b): the former studying the derivation and convergence of the Moran model
with two types to the 1-d version of the replicator-diffusion equation discussed here,
and the latter with a comprehensive analytical study of the 1-d replicator-diffusion
equation. The derivation of the continuous model in Chalub and Souza (2009a) hinged
on the idea that a formal expansion of master equation, but with control of the local er-
ror, and results on well-posedness of the continuous classical problem can be brought
together via numerical analysis approximation results. This combination then yielded
uniform convergence, in any proper closed sub interval of [0,1], of the rescaled prob-
abilities of the discrete model to the continuous probability density. This conver-
gence result, combined with the analytical results in Chalub and Souza (2009b) on
a weak formulation that satisfies the conservation laws provided a continuous mea-
sure solution. The discrete process then converges weakly towards such a solution,
on a neighbourhood of each endpoint, but uniformly as described above. To study
the Wright-Fisher continuous limits, however, we took a different route. This allows
us to derive an approximate discrete weak formulation of the discrete process, with
global error control. Further, by embedding the discrete probabilities in an appropri-
ate measure space, we could use compactness arguments to obtain the continuous
limit. Thus, in this setting both the weak formulation and the weak convergence of
the discrete model to the continuous one follows with considerable less effort, but we
do not get the improved convergence on the interior.

1.1 Scalings, limits and approximations

In order to be able to study more general models, we follow the approach used by
the authors in Chalub and Souza (2009a). In particular, we are interested not only
in diffusion approximations, but in approximations that can be consistent with the
dynamics of the corresponding discrete process.

We begin with a definition:

Definition 1 We shall say that a simplified model M0 is an approximation of the
family of detailed models Mγ , γ > 0, in a sense χ , where χ is an appropriate metric
as, for instance, any norm in a suitable space of functions (e.g., L1, L2, L∞, etc) if the
following holds true:

1. Consider a certain family of initial conditions hI
γ such that limγ→0 hI

γ = hI
0, in the

sense χ;
2. Evolve through the model Mγ the initial condition hI

γ and through the model M0

the initial condition hI
0 until the time t < ∞ obtaining hγ(t) and h0(t) respectively;

If for all t < ∞ we have that limγ→0 hγ(t) = h0(t), in the sense χ , then we say that
the model Mγ converge in the limit γ → 0, in the sense χ , to the model M0. If,
furthermore, this convergence is uniformly in t ∈ [0,∞), then we say that the model
Mγ converge in the limit γ → 0 to the model M0 uniformly in time.

Some examples of the relation between detailed and simplified models are listed
in Table 1.
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Detailed model Meaning of parameter γ Simplified model
Kinetic models mean free path hydrodynamical models

Othmer-Dumbar-Alt model mean free path Keller-Segel model
Quantum Mechanics rescaled Planck constant Classical Mechanics

Relativistic mechanics (rescaled light velocity)−1 Non-relativistic Mechanics
Moran process inverse of population size replicator-diffusion equation
Moran process inverse of population size replicator equation

Table 1 Detailed and simplified models. The last two lines state that both the replicator equation and
the replicator diffusion equation approximates the Moran process. References to these works are (Bardos
et al. 1991, 1993; Cercignani 2002; Hillen and Othmer 2000; Othmer and Hillen 2002; Chalub et al. 2004;
Stevens 2000; Hepp 1974; Cirincione and Chernoff 1981; Bjorken and Drell 1964; Chalub and Souza
2009b,a).

In general, some extra assumptions are frequently required to allow the passage
to the limit. If, for example, there are more than one small parameter in the detailed
model, it is natural to assume a relationship among them, called scaling, as, in gen-
eral, the limit model will depend on how these parameters approaches zero. Other
assumptions may also be necessary, as it will be discussed in the next paragraph.
The process of taking the limit of a family of models, considering a given scaling,
will be called “the thermodynamical limit”; by extension, we shall also call the limit
model the thermodynamical limit. In this work, depending on the precise choice of
the scaling, the limit equation can be of drift-type (a partial differential equation fully
equivalent to the replicator equation or system), of purely diffusion type, or, in a
delicate balance, of drift-diffusion type.

In what follows, an important and natural assumption that must be introduced in
order that we have an approximation in the sense of definition 1 is the so-called weak
selection principle, to be precisely stated in equation (7). Generally speaking, we as-
sume that the fitness of a given individual converges to 1 when the time separation
between two successive generations ∆ t approaches zero. This is a natural assumption
when we consider that two successive generations collapses into a single one. How-
ever, in most of the literature, the weak selection principle is assumed in the limit of
N → ∞, where N is the population size. Although they are equivalent (as we shall
assume a certain scaling relation between N and ∆ t), we consider our approach more
natural.

In this work, we will consider as the detailed model, the Wright-Fisher process, to
be studied in detail for finite populations in Section 3: an evolutionary process for an
asexual population of N individuals, constant in size, divided in n different types, that
evolves according to a specific rule, with fixed time separation between generations
of ∆ t > 0 (the detailed model in the discussion above, where γ is the inverse of the
population size — or, as we shall see, equivalently, the inter generation time).

In short, given the weak-selection principle, we are able to find a precise scal-
ing that yields, as the thermodynimical limit. a parabolic equation with degenerate
diffusion at the boundaries: namely the replicator-diffusion equation. Under a range
of different scalings, however, we shall also obtain a simpler first order differential
system: the replicator equation. This simpler model turns out to be a good approx-
imation for the detailed model over a short time scale, if genetic drift is weak or
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selection is strong2. For the former approximation, nevertheless, we shall be able to
show that limγ→0 limt→∞ hγ(t) = limt→∞ limγ→0 hγ(t), and hence we conjecture that
such an approximation should be uniform in time.

1.2 Outline

Section 2 introduces the basic notation and provides an extended abstract of our main
results. In Section 3, we review some classical results about the discrete process (the
finite population Wright-Fisher process); we also show the existence of a number of
associated conservation laws, and explicitly obtain the first moments of the Wright-
Fisher process. In Section 4, with the assumption of weak-selection, we obtain a fam-
ily of continuous limits of the Wright-Fisher process depending on the scalings that
are derived within a weak formulation, with solutions in appropriate measure spaces.
In particular, we derive the replicator-diffusion equation, and show that it satisfies
continuous counterparts of the conservation laws for the discrete process. We then
continue the study of the replicator-diffusion equation in Section 5, where we derive
the main properties of its solutions, including a description of the solution structure
as a regular part and a sum of singular measures over the sumbsimplices, and the
large time convergence to a sum of Dirac measures over the vertices of the simplex.
We also show that the probability distribution associated with all types in the popula-
tion concentrates along the evolutionary stable states. Additionally, in Subsection 5.2,
we obtain the backward equation as the proper dual of the replicator-diffusion equa-
tion, providing a consistent generalisation of the Kimura equation for the n types and
arbitrary fitness functions. In Section 6, we study the replicator equation and show
that, in the regime of strong selection the solutions to the replicator-diffusion will
be well approximated by the solutions to the replicator equation within a finite time
interval. Numerical examples are given in Section 7, where we also point out that,
for intermediate times and large but finite populations, the replicator equation will
approximate the mode of the discrete evolution, but not the expected value of a given
trait. Conclusions are presented in Section 8.

2 Preliminaries and main results

We begin by introducing the space of states for the evolution:

Definition 2 Let R+ = [0,∞). We define the n−1 dimensional simplex

Sn−1 :=

{
x ∈ Rn

+

∣∣∣∣∣ |x| := n

∑
i=1

xi = 1

}
.

We also define the set of vertices of the simplex ∆Sn−1 := {x ∈ Sn−1|∃i,xi = 1}, its
interior intSn−1 := {x ∈ Sn−1|∀i,xi > 0} and its boundary ∂Sn−1 = Sn−1\intSn−1.
The state of the population is a vector x∈ Sn−1. The elements of ∆Sn−1 are denoted ei,

2 Strong selection in this context is not directly related or opposed to weak selection as introduced
before.



The frequency-dependent Wright-Fisher model: diffusive and non-diffusive approximations. 7

i = 1, . . . ,n and called “homogeneous states”. A vector x ∈ Sn−1\∆Sn−1 is a “mixed
state”.

In what follows, we let p(x, t) to be the probability density of finding the popula-
tion at state x ∈ Sn−1 at time t ≥ 0.

Definition 3 The fitness of type i, i = 1, . . . ,n is a continuous function ψ(i) : Sn−1→
R, and the average fitness in a given population is given by ψ̄(x) := ∑

n
i=1 xiψ

(i)(x).
Note that we consider the fitness function to not depend explicitly on time.

In this work, we derive a family of detailed models described by a parabolic equa-
tion of drift-diffusion type, with degenerated coefficients (DiBenedetto 1993; Carrol
and Schowalter 1976), defined in the simplex Sn−1, called the replicator-diffusion
equation, namely:

∂t p = Ln−1,x p := κ

2 ∑
n−1
i, j=1 ∂ 2

i j (Di j p)−∑
n−1
i=1 ∂i (Ωi p) ,

Di j := xiδi j− xix j ,

Ωi := xi

(
ψ(i)(x)− ψ̄(x)

)
,

(1)

with i, j = 1, . . . ,n−1, κ > 0, and where δi j = 1 if i = j and 0 otherwise is the Kro-
necker delta. The above equation has a solution in the classical sense (i.e., everywhere
differentiable). Furthermore, in the classical sense, it is a well posed problem, with-
out any boundary conditions. However, this classical solution is not the correct limit
of the discrete process. In order to find the correct limit, equation (1) is to be supple-
mented with n conservation laws. From now on, whenever we refer to the replicator-
diffusion equation (1), we are implicitly assuming these conservation laws.

Our main conclusions are:

1. An analysis of the equation (1) leads to a unique solution of measure type. This
will require definitions of appropriate functional spaces.

2. This unique solution approximates, in the thermodynamical limit, the evolution
of a discrete population by the Wright-Fisher process pointwise for any time. In
addition, the large time asymptotics is consistent with the discrete model.

3. A reduced model, obtained by setting κ = 0 in (1) (with only one conservation
law), is shown to be equivalent to the replicator dynamics. This will suggest that
the replicator dynamics approximates the discrete process for any t, however with
an error increasing in t along a fixed discretisation

4. Furthermore, the solution of the replicator equation models the time evolution of
the mode of the probability distribution associated to the discrete process (and not
the expected value of the same distribution);

5. A frequency dependent generalisation of the Kimura equation for an arbitrary
number of types is obtained by looking at the dual problem for (1).

Before going into the technical details, we explain the last paragraph a little fur-
ther.

Equation (1) has two natural time scales, one for the natural selection (the math-
ematical drift and, as we shall see, fully compatible with the replicator equation),
the second for the genetic drift (the mathematical diffusion). That is why we call
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equation (1) together with the conservation laws to be introduced in Subsection 4.5,
the “replicator-diffusion equation”. More precisely, the solution of the replicator-
diffusion equation when κ = 0 (which is of hyperbolic type) is the leading order term
of the solution pκ of the replicator-diffusion equation for small κ (i.e., large fitness
and/or short times). The replicator-diffusion equation with zero diffusion (κ = 0)
happens to be the replicator equation (or system) (Hofbauer and Sigmund 1998).
In an appropriate sense, to be made precise in Section 6.3 (Theorem 11), we have
pκ

κ→0−→ p0, pointwise, but not uniformly in time.

Theorem 11 cannot be made uniform in time, for general fitness functions and
initial conditions, as the Wright-Fisher process always converge in t → ∞ to a lin-
ear combination of homogeneous states, while it is possible that the solution of the
replicator equation converges to a stable mixed state.

The former statement is the mathematical formulation of a known principle in
evolutionary biology that states that “given enough time every mutant gene will be
fixed or extinct.” (Kimura 1962). This means that the final state of the replicator-
diffusion equation with any κ > 0 will be a linear combination of Dirac deltas at the
vertices of the simplex Sn−1. Actually, for any positive time, the solution of equa-
tion (1) with the conservation laws described above is a sum of a classical function in
the simplex plus a sum of singular measures over all the subsimplexes on ∂Sn−1 and,
inductively, on their boundaries subsimplexes. In particular, we shall have also Dirac
measures supported on the vertices of the simplex. These measures appears immedi-
ately, i.e., for any t > 0. This represents the fact that in a single step there is a non zero
— however, small — probability that the population reaches fixation through Wright-
Fisher evolution. The full evolution and the final states of the replicator-diffusion
equation will be studied in Section 5.

From the practical point of view, we are, however, often interested in transient
states (“in the long run, we are all dead”, said John Maynard Keynes), specially
because the transient states become more and more important for the discrete evo-
lution as the population size increases. Heuristically, when the population is large
the stochastic fluctuations decrease in importance, and therefore, its evolution is de-
terministic. The associated limit will be given by equation (1), with κ = 0, i.e., the
hyperbolic limit of equation (1). This equation does not develop finite-time singular-
ities.

The relationships between the three models is summarised in Figure 1.

Finally, we observe that the natural formulation for the continuous limit is the
weak one. For such a formulation, we only require the fitness functions to be contin-
uous. If, in addition, these functions are also Lipschitz, we can then recast the problem
in a strong sense, provided that we supplement it with the conservation laws. Finally,
requiring the fitness functions to be smooth allows for a number of results about the
solutions to be easily derived. In particular, one can prove a structure theorem that
show that the problem is equivalent to a hierarchy of classical degenerate problems,
provided that some members are interpreted as densities for singular measures.
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Fig. 1 The boxes in the figure represents the solutions of three different models: the Wright-Fisher process
(finite population N), the replicator-diffusion equation (positive diffusion κ) and the replicator equation.
The vertical axis indicates the arrow of time (top-down), and the horizontal axis indicates, first the large
population limit, secondly the no-diffusion limit. Consider that there is a maximum acceptable error ε (in
the L∞ norm) between the Wright-Fisher model (suitably Radonmised — see Subsection 4.3) and the con-
tinuous approximation. Therefore, there is a population size N0 such that for N >N0 the difference between
the replicator-diffusion equation and the discrete model is less than ε . For the replicator approximation,
for any N, it may exist maximal time tmax(N)< ∞ such that for t > tmax the error is too large.

3 The discrete model

In this section, we study the discrete model, i.e., the Wright-Fisher model for constant
population, arbitrary number of types and arbitrary fitnesses functions. We start, in
Subsection 3.1 with basic definitions; in Subsection 3.2 we briefly review some im-
portant results in the literature. We also prove that the discrete process has as many
linear conservation laws as types. Additionally, we also show that the final state is
a linear superposition of these independent stationary states, with coefficients that
depend on the initial condition and that can be calculated from a set of n linearly
independent conservation laws. All these results will be useful in the correct determi-
nation of the continuous process, to be done in Sections 4 and 5. The discrete Wright-
Fisher process was studied, with different level of details in, for example, (Ewens
2004; Nowak 2006; Imhof and Nowak 2006), but, to the best of our knowledge the
conservation laws associated to the process were overlooked.

The fact that the final state in the Wright-Fisher process, among others, for a fi-
nite population is always homogeneous was also a matter of dispute with respect to
the validity of the modelling (Vickery 1988; Smith 1988). As we will shortly see
in this work, this dispute is basically a consequence of the existence of two differ-
ent time scales hidden in the model: the non-diffusive (drift) and the diffusive one.
See also Ethier and Kurtz (1986) and Etheridge (2011) and references therein for a
discussion in the rôle of time scales.



10 Fabio A. C. C. Chalub, Max O. Souza

3.1 Preliminaries

We consider a fixed size population of N individuals at time t consisting of a fraction
xi ∈

{
0, 1

N ,
2
N , . . . ,1

}
of individuals of type i = 1,2, · · · ,n. The population evolves

in discrete generations with time-step separation of ∆ t. We introduce the following
notation:

Definition 4 The state of a population is defined by a vector in the N-discrete n−1-
dimensional simplex

Sn−1
N :=

{
x = (x1, · · · ,xn)

∣∣|x| := n

∑
i=1

xi = 1,xi ∈
{

0,
1
N
,

2
N
, · · · ,1

}}
.

We also define the set of vertices of the n−1-dimensional simplex

∆Sn−1
N := {x ∈ Sn−1

N |∃i,xi = 1}= {ei|i = 1, . . . ,n} .

The elements of ∆Sn−1
N are called the homogeneous states. To each type we attribute

a function, called fitness, Ψ
(i)

∆ t : Sn−1
N → (0,∞). It is convenient to assume that Ψ

(i)
∆ t is

a discretisation of a continuous function on the simplex Sn−1; more assumptions on
Ψ

(i)
∆ t will be introduced in Section 4.

A population at time t +∆ t is obtained from the population at time t choosing
N individuals with probability proportional to the fitness. More precisely, we define
the average fitness Ψ̄∆ t(x) = ∑

n
i=1 xiΨ

(i)
∆ t (x) and then the transition probability from a

population at state y to a population at state x is given by

ΘN,∆ t(y→ x) =
N!

(Nx1)!(Nx2)! · · ·(Nxn)!

n

∏
i=1

(
yiΨ

(i)
∆ t (y)

Ψ̄∆ t(y)

)Nxi

. (2)

The evolutionary process given by a Markov chain with transition probabilities
given by equation (2) is called the (frequency dependent) Wright-Fisher process.

Let P(t) = (P(x, t))x∈Sn−1
N

, with

P ∈

P : Sn−1
N ×R+→ R+| ∑

x∈Sn−1
N

P(x, ·) = 1

 ,

where P(x, t) is the probability of finding the population at a given state x ∈ Sn−1
N at

time t. Then, the evolution is given by the so called “master equation”:

P(x, t +∆ t) = (T P(t))(x) := ∑
y∈Sn−1

N

ΘN,∆ t(y→ x)P(y, t) . (3)
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3.2 Stationary states, final states and conservation laws

We call an homogeneous population a population of a single type, i.e., P(x, t) = P̂v(x)
for v ∈ ∆Sn−1

N , where

P̂x(y) =
{

1 , y = x ,
0 , y 6= x .

From the inner product definition:

〈v,w〉 := ∑
x∈Sn−1

N

v(x)w(x) ,

it follows immediately that 〈P̂x, P̂y〉= δx,y = 1 if x = y and 0 otherwise.
Now, we state classical results for the Wright-Fisher process that will be useful

in the sequel. Firstly, from the Perron-Frobenius theorem, the operator T ∞ : Sn−1
N →

Sn−1
N , T ∞P := limm→∞ T mP is well defined. For details in the lemma below, the

interested reader should consult Karlin and Taylor (1975).

Lemma 1 A function f defined in Sn−1
N is a fixed state of the operator T if, and only

if, f is a linear combination of homogeneous states. In particular, T has exactly n
linearly independent eigenfunctions associated to the eigenvalue λ = 1. For all non-
negative initial condition PI, the final result is a linear combination of homogeneous
states,

T ∞P := lim
t→∞

P(·, t) =
n

∑
i=1

F(i)
Pei

P̂ei ,

where F(i)
P := limm→∞〈ei,T mP〉 is the fixation probability of the type i in a popula-

tion initially with a probability distribution P ∈ Sn−1
N .

Definition 5 We define a linear conservation law as one given by a linear functional
L over the functions of Sn−1

N such that L(P(t +∆ t)) = L(P(t)). A set of linear
conservation laws is linearly independent, if the only linear combination providing a
trivial conservation law L(P(t)) = 0 is the trivial one.

Proposition 1 Define F(i) :=∑x∈Sn−1
N

F(i)
P̂x

P̂x, i= 1, . . . ,n, a functional over Sn−1
N . There-

fore F(i)(x) is the fixation probability of the type i associated to the initial condition
x. Finally, the set {F(1), . . . ,F(n)} is a basis for the set of linear conservation laws
associated to the operator T .

Proof From the fact that

T ∞P =
n

∑
i=1

F(i)
P P̂ei

we find
F(i)

P = (T ∞P)(ei) = 〈T ∞P, P̂ei〉= 〈P,
(
T †)∞

P̂ei〉 .

In particular

∑
x∈Sn−1

N

F(i)
P̂x

P̂x = ∑
x∈Sn−1

N

〈P̂x,
(
T †)∞

P̂ei〉P̂x.
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Finally, (
T †)∞

P̂ei = ∑
x∈Sn−1

N

F(i)
P̂x

P̂x = F(i) .

Therefore, F(i) is an eigenvector of T †. In particular,

F(i)(e j) = 〈
(
T †)∞

P̂ei , P̂e j〉= 〈P̂ei ,T
∞P̂e j〉= 〈P̂ei , P̂e j〉= δi j .

It is immediate to prove that they are linearly independent; let α1, . . . ,αn such that
∑

n
i=1 αiF

(i) = 0, i.e., for every x∈ Sn−1
N , ∑

n
i=1 αiF

(i)(x) = 0. Using x= ei, we conclude
that αi = 0, and then {F(1), . . . ,F(n)} is a basis for the eigenspace of T † associated
to λ = 1.

Now, consider a linear conservation law L. From standard representation theo-
rems, there is a vector w ∈ Sn−1

N such that

〈P(t),w〉= L(P(t)) = L(P(t +∆ t)) = 〈T P(t),w〉= 〈P(t),T †w〉 . (4)

Therefore, w is an eigenvector of T † associated to λ = 1 and then it is a linear
combination of F(i), i = 1, . . . ,n.

Remark 1 The conservation of probability (the most natural conservation law), fol-
lows directly from the equation

n

∑
i=1

F(i)(x) =
n

∑
i=1

F(i)
P̂x

= 1 , ∀x ∈ Sn−1
N .

3.3 Properties of the transition kernel

The probability conservation is a consequence of the definition (2) and reads

∑
x∈Sn−1

N

ΘN,∆ t(y→ x) = 1, ∀y ∈ Sn−1
N . (5)

It also follows from the definition that

ΘN,∆ t(y→ x) =
{

1 if x = y ∈ ∆Sn−1
N ,

0 if x 6= y ∈ ∆Sn−1
N ,

(6)

which can be readily interpreted as the absence of mutations in the model.
It will be also convenient to write

Sn−1
N,x± =

{
y ∈ Rn−1|x±y ∈ Sn−1

N
}
.

and to introduce

zτi = yi, z =
1√
N
. and Sx,z = {τ ∈ Rn∣∣ n

∑
i=1

τi = 0 and|τi|< xi/z}.
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Lemma 2 Define

x̃i =
xiΨ

(i)
∆ t (x)

Ψ̄(x)

and
GΘ [h] = ∑

zτ∈Sn−1
N,x+

Θ(x→ x+ zτ)h(τ) ,

where h : Sx,z→ R.
For any N, we have

GΘ [1] = 1
zGΘ [τi] = x̃i− xi

z2GΘ [τiτ j] = (x̃i− xi)(x̃ j− x j)+ z2 (δi j x̃i− x̃ix̃ j)

z3GΘ [τiτ jτk] = (x̃i− xi)(x̃ j− x j)(x̃k− xk)

+ z2 [(δi j x̃i− x̃ix̃ j)(x̃k− xk)+(δikx̃i− x̃ix̃k)(x̃ j− x j)+(δ jkx̃ j− x̃ j x̃k)(x̃i− xi)
]

+ z4 [2x̃ix̃ j x̃k− (δi j x̃ j x̃k +δikx̃ix̃ j +δk j x̃ix̃ j)+δi jδikδ jkx̃i
]

Proof Let q ∈ Sn−1, α ∈ NSn−1
N and consider the multinomial distribution given by

f (q,α,N) =
N!

α1! · · ·αn!

n

∏
k=1

qαk
k , α = (α1, . . . ,αn), ∑

i
αi = N .

Then, α is a vector of random variables with first moments given by

E[1] = 1 ,

E[αi] = Nqi ,

E[(αi−Nqi)(α j−Nq j)] = Cov(αi,α j) = N(δi jqi−qiq j) ,

E[(αi−Nqi)(α j−Nq j)(αk−Nqk)] = N
[
qiδi jδk j−

(
qiqkδi j +qiq jδk j +qkq jδik

)
+2qiq jqk

]
,

where E[·] is the expected value under the multinomial distribution. See Taylor and
Karlin (1998) for the mean and covariance; for the sake of completeness, we provide
a derivation of the third moment in Appendix A.

Now, note that ΘN,∆ t(x,x+ zτ) = f (x̃,N(x+ zτ),N). Therefore, α = N(x+ zτ)
is a random vector that is multinomially distributed, and upon substituting α in the
multinomial moments — with q = x̃ — all the identities follow after some manipu-
lation. ut

4 Continuations of the discrete model

The aim of this section is to obtain a differential equation that approximates the dis-
crete evolution, when the population is large (N→∞) and there is no time-separation
between successive generations (∆ t→ 0). The relevant variables, x ∈ Sn−1 and t > 0
will be forced to be continuous.
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The first four subsections will be devoted to the development of three models,
based on partial differential equations obtained from the Wright-Fisher process, when
N→∞ and ∆ t→ 0 (see equations (15), (16) and (1’), respectively). There is no “right
choice” of the simplified model. As we could expect, simpler models will have a re-
stricted application. For example, the model given by equation (15) is equivalent
to a system of a ordinary differential equations; actually, it is exactly equivalent to
the well-know replicator dynamics (see Hofbauer and Sigmund 1998). On the other
hand, the diffusive approximation, given by equation (16), is a parabolic partial dif-
ferential equation that is much simpler to solve than the full model; in fact, explicit
solutions are know using Gegenbauer polynomials (Ewens 2004). Our focus will be
on the replicator-diffusion approximation, equation (1’), which we expect to be valid
uniformly in time.

Results known for the Wright-Fisher process, and stated in Section 3 will guide
the derivation, i.e., the choice of the right thermodynamical limit. We start in Sub-
section 4.1 by the asymptotic expansion of the transition kernel in the negligible pa-
rameters (suitable combinations of N and ∆ t); we plug this expansion into the master
equation (3) in Subsection 4.2. In Subsection 4.3, we construct the continuous version
of the discrete probability densities; in particular, we interpolate discrete probabilities
in order to represent them by continuous probability measures; these measures will
be central when we finally pass to the limits in Subsection 4.4, obtaining the various
continuous approximations of the discrete model. Finally, in Subsection 4.5, we show
that, for every conservation law of the discrete process, there exists a corresponding
conservation law in the continuous model. As a by product, the final state of the con-
tinuous model shall be a linear superposition of homogeneous states (see Lemma 1
and compare it with Theorem 7).

4.1 Preliminaries

From a biological point of view, the most important assumption in this derivation is
the so called weak selection principle

Ψ
(i)

∆ t (y) = 1+(∆ t)ν
ψ

(i)(y), (7)

where ψ(i) : Sn−1 → R is a continuous function, and ν > 0 is a parameter yet to be
specified. In this case, we also have

Ψ̄∆ t(y) = 1+(∆ t)ν
ψ̄(y) ,

where ψ̄(x) := ∑
n
i=1 xiψ

(i)(x).
As an immediate corollarium of Lemma 2 we have
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Corollary 1 Assume the weak-selection principle given by equation (7). Then, equa-
tions for GΘ in Lemma 2 are given by

zGΘ [τi] = xi (∆ t)ν
(

ψ
(i)(x)− ψ̄(x)

)
+O

(
(∆ t)2ν

)
,

z2GΘ [τiτ j] =
1
N
(xiδi j− xix j)+O

(
N−1 (∆ t)ν ,(∆ t)2ν

)
z3GΘ [τiτ jτk] = O

(
(∆ t)3ν ,N−1 (∆ t)ν ,N−2

)
.

Proof All equations follow from the fact that

x̃i = xi
1+(∆ t)ν

ψ(i)(x)
1+(∆ t)ν

ψ̄(x)
= xi

[
1+(∆ t)ν

(
ψ

(i)(x)− ψ̄(x)
)
+O

(
(∆ t)2ν

)]
and from Lemma 2.

4.2 An asymptotic weak-discrete formulation

We rewrite the master equation (3) using displacements:

p(x, t +∆ t,N) = ∑
y∈Sn−1

N,x−

ΘN,∆ t(x−y→ x)p(x−y, t,N). (8)

We use our information on moments of the process as follows:

Proposition 2 Let g ∈ C3,1(ϒ ), where ϒ is any open set such that Sn−1 ⊂ ϒ , and
consider its restriction to the simplex Sn−1. Then, we have

∑
x∈Sn−1

N

(p(x, t +∆ t,N)− p(x, t,N))g(x, t) (9)

= ∑
x∈Sn−1

N

p(x, t,N)

[
1

2N

n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, t)+(∆ t)ν

n−1

∑
j=1

x j∂x j g(x, t)(ψ
( j)(x)− ψ̄(x))

]

+O
(

N−2,(∆ t)2ν ,N−1 (∆ t)ν
)
.

Proof On multiplying equation (8) by g(x, t) and summing over Sn−1
N , we find that:

∑
x∈Sn−1

N

p(x, t +∆ t,N)g(x, t) = ∑
x∈Sn−1

N

∑
y∈Sn−1

N,x−

ΘN,∆ t(x−y→ x)p(x−y, t,N)g(x, t)

= ∑
x∈Sn−1

N

∑
y∈Sn−1

N,x+

ΘN,∆ t(x→ x+y)p(x, t,N)g(x+y, t)

= ∑
x∈Sn−1

N

p(x, t,N) ∑
zτ∈Sn−1

N,x+

Θ(x→ x+ zτ)g(x+ zτ, t)

= ∑
x∈Sn−1

N

p(x, t,N) ∑
zτ∈Sn−1

N,x+

Θ(x→ x+ zτ)

[
g(x, t)+ z

n−1

∑
j=1

τ j∂x j g(x, t)+
z2

2

n−1

∑
k,l=1

τkτl∂
2
xkxl

g(x, t)+ z3R(x,τ, t,z)

]
.
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where there is a constant C, depending only on g, such that

|R(x,τ, t,z)| ≤C‖τ‖3.

Using Corollary 1, we obtain the result. ut

Equation (9) can be seen as discrete weak formulation for p(x, t,N) in space
only, and thus any limiting argument would require some regularity assumption on
p(x, t,N) in t. In order to circumvent such assumptions, we need a full discrete weak
formulation:

Proposition 3 Let T = M∆ t, where M is some fixed positive integer, and let g be an
admissible test function, with support in Sn−1× [0,T ]. Let

T= {k∆ t}, k = 0, . . . ,M−1.

Then we have that

−∑
t∈T

∑
x∈Sn−1

N

p(x, t,N)(g(x, t +∆ t)−g(x, t))− ∑
x∈Sn−1

N

p(x, t,N)g(x,0) (10)

= ∑
t∈T

∑
x∈Sn−1

N

p(x, t,N)

[
1

2N

n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, t)+(∆ t)ν

n−1

∑
j=1

x j∂x j g(x, t)(ψ
( j)(x)− ψ̄(x))

]

+O
(

N−2 (∆ t)−1 ,(∆ t)2ν−1 ,N−1 (∆ t)ν−1
)
.

Proof Sum (9) over T, and estimate the error term by its total sum, taking into ac-
count that there are O((∆ t)−1) terms in this sum. This shows the right hand side of
(10). To obtain the left hand side, we perform a summation by parts and use that
g(x,T ) = 0. See appendix B for details. ut

4.3 Continuous representation

The aim is now to obtain a continuous version of (10), but without taking any limits
yet. We first need some preliminary definitions:

Definition 6 (Piecewise time interpolation) Let T be a set of sampling times as
above, and let T0 be a set of times such that for each t̄ ∈ T, there exists a unique
ξ ∈ T0 such that ξ ∈ (t̄, t̄ + ∆ t). Let g be an admissible test function with sup-
port in Sn−1× [0,T ]. Observe that under the assumptions on the sets T and T0, for
each t ∈ [0,T ] there exists a unique t̄ ∈ T such that t ∈ [t̄, t̄ + ∆ t), and a unique
ξ ∈ (t̄, t̄ +∆ t). With this in mind, we define:

ĝ(x, t) = g(x, t̄), t ∈ [t̄, t̄ +∆ t), t̄ ∈ T,

and

ˆ̂g(x, t) = g(x,ξ ), t ∈ [t̄, t̄ +∆ t), ξ ∈ (t̄, t̄ +∆ t), t̄ ∈ T and ξ ∈ T0.
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Remark 2 For fixed x, we have on one hand that ĝ(x, t) is just freezing the value of g
on [t̄, t̄ +∆ t) to be the value of g(x, t̄). On the other hand, ˆ̂g(x, t) is freezing the value
of g on the same interval to be the value of g(x,ξ ), with ξ ∈ (t̄, t̄ +∆ t). The natural
choice for ξ will arise, in the present context, from applications of the mean value
theorem to g over the interval [t̄, t̄ +∆ t].

Definition 7 (Radonmisation (sic) of discrete densities) Let p(x, t,N) be a proba-
bility density defined no Sn−1

N ×T. Let δx denote the atomic measure at x. We define

pN(x, t) = ∑
y∈Sn−1

N

p(y, t̄,N)δy(x), t ∈ [t̄, t̄ +∆ t).

With these definitions we have the following result

Proposition 4 Let g be an admissible test function, let N−1 = κ (∆ t)µ , where µ > 0
is a second parameter yet to be specified, and let p∆ t(x, t) = p

κ−1(∆ t)−µ (x, t). Then
there exists a set T0 as in Definition 6, such that

−
∫

∞

0

∫
Sn−1

p∆ t(x, t)∂t ˆ̂g(x, t)dxdt−
∫

Sn−1
p∆ t(x,0)ĝ(x,0)dxdt

=
κ (∆ t)µ−1

2

∫
∞

0

∫
Sn−1

p∆ t(x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jĝ(x, t)

)
dxdt

+(∆ t)ν−1
∫

∞

0

∫
Sn−1

p∆ t(x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jĝ(x, t)

]
dxdt (11)

+O
(
(∆ t)2µ−1 ,(∆ t)ν+µ−1 ,(∆ t)2ν−1

)
.

Proof For the right hand side, we observe that ĝ(x, t) = g(x, t) for x ∈ Sn−1
N and

k∆ t ≤ t < (k+1)∆ t, k = 0,1, . . ., and that this also holds for all partial derivatives of
g not involving t. On using the definition of p∆ t , we readily obtain the equivalence
between the sums over Sn−1

N and the integrals in x. For the time integrals, we point out
that both p∆ t(x, t), ĝ(x, t) and similarly for the derivatives of g are piecewise constant
in t. Hence the summation over time can be exactly converted into a time integral
with a factor of (∆ t)−1. As for the left hand side, apply the mean value theorem to
g(x, ·) to get the result and the set T0. ut

Remark 3 The reader is cautioned that, although (11) has a remarkable resem-
blance with a weak formulation, it is not quite so, since the prospective test functions
ĝ and ˆ̂g are not test functions in the usual sense.

4.4 Passage to the limit

We now deal with the limit ∆ t→ 0 in (11).

Theorem 1 Under the same assumptions of Proposition 4, we have that, for any
choice of parameters µ and ν , there exists p∈L∞([0,T ],BM+

(
Sn−1

)
)), where BM+

(
Sn−1

)
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is the set of positive measures of bounded variation on Sn−1, such that p∆ t(x, t)→
p(x, t) weakly as ∆ t→ 0. Moreover, the following limits also hold:∫

∞

0

∫
Sn−1

p∆ t(x, t)∂t ˆ̂g(x, t)dxdt→
∫

∞

0

∫
Sn−1

p(x, t)∂tg(x, t)dxdt

∫
∞

0

∫
Sn−1

p∆ t(x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jĝ(x, t)

)
dxdt

→
∫

∞

0

∫
Sn−1

p(x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, t)

)
dxdt

∫
∞

0

∫
Sn−1

p∆ t(x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jĝ(x, t)

]
dxdt

→
∫

∞

0

∫
Sn−1

p(x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jg(x, t)

]
dxdt

Proof From the tightness of Radon measures, cf. Billingsley (1999), we have that
there exists a sequence ∆ tn > 0, with ∆ tn ↓ 0 as n→∞, and p∈L∞([0,T ],BM+

(
Sn−1

)
),

such that

lim
n→∞

p∆ tn(x, t) = p(x, t).

The convergence of the integrals follows from the weak convergence of p∆ tn → p,
and from the fact that for a continuous function h, we have

lim
∆ t→0
‖h− ĥ‖∞ = lim

∆ t→0
‖h− ˆ̂h‖∞ = 0.

ut

If either µ < 1 or ν < 1, we can multiply (11) by (∆ t)−min(ν−1,µ−1). It is then
easily verified that the error term vanishes in the limit, as well as the term with a
time derivative. Thus, in this case, we obtain stationary limits governed by the steady
version of the equations derived below. Now let us assume that µ,ν ≥ 1. It is easily
verified that the error term will be small. If both µ,ν > 1, we have stationary solutions
given by the initial condition.

The other cases are as follows:

Theorem 2 There exists p ∈ L∞([0,T ];BM+
(
Sn−1

)
) such that

If µ > 1, ν = 1, the convective or drift approximation:

−
∫

∞

0

∫
Sn−1

p(x, t)∂tg(x, t)dxdt−
∫

Sn−1
p(x, t0)g(x, t0)dx

=
∫

∞

0

∫
Sn−1

p(x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jg(x, t)

]
dxdt. (12)
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If µ = 1, ν > 1, the diffusive approximation

−
∫

∞

0

∫
Sn−1

p(x, t)∂tg(x, t)dxdt−
∫

Sn−1
p(x, t0)g(x, t0)dx

=
κ

2

∫
∞

0

∫
Sn−1

p(x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, t)

)
dxdt. (13)

If µ = 1, ν = 1, the case where there is a maximal balance of selection and genetic
drift; we find the replicator-diffusion equation

−
∫

∞

0

∫
Sn−1

p(x, t)∂tg(x, t)dxdt−
∫

Sn−1
p(x, t0)g(x, t0)dx

=
κ

2

∫
∞

0

∫
Sn−1

p(x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, t)

)
dxdt (14)

+
∫

∞

0

∫
Sn−1

p(x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jg(x, t)

]
dxdt.

Proof The result follows from Theorem 1, and from straightforward bookkeeping of
the ∆ t orders of the terms in (11). ut

Remark 4 Alternatively, Theorems 1 and 2 can be seen together as an existence
theorem for equations (12), (13) and (14). Under additional regularity hypothesis
on the fitness functions we have uniqueness — see Section 5 — and then the limit is
unique.

Equations (12), (13) and (14) are written in the weak form. In population dynam-
ics, and in others contexts as well, they are used casted into the strong formulation
(or standard PDE formulation) as follows (see, however, remark 5):

– If µ > 1 and ν = 1, the convective of drift approximation:

∂t p =−
n−1

∑
i=1

∂i

[
xi

(
ψ

(i)(x)− ψ̄(x)
)

p
]
. (15)

This equation is equivalent to the replicator dynamics, showing that the Wright-
Fisher process will be equivalent to the the replicator dynamics, in the limit of
large population and small time-steps, if the population increases faster than the
time-step decreases.

– If µ = 1 and ν > 1, the diffusive approximation

∂t p =
κ

2

n−1

∑
i, j=1

∂i j ((xiδi j− xix j)p) , (16)

which is relevant when the fitness converges to 1 as ∆ t→ 0 faster than N→ ∞.
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– When there is a perfect balance between population size and time step, i.e.,
µ = ν = 1, we find the replicator-diffusion approximation, given by equation (1),
which we repeat here for convenience:

∂t p =
κ

2

n−1

∑
i, j=1

∂i j ((xiδi j− xix j)p)−
n−1

∑
i=1

∂i

[
xi

(
ψ

(i)(x)− ψ̄(x)
)

p
]
. (1’)

We shall focus on the last equation and on its weak formulation (14).

Remark 5 We shall see in Section 5 that the weak and the PDE formulations are not
equivalent, and that the correct formulation is actually the weak one.

4.5 Conservation laws from the discrete process

Let us write S for the set of all functions g : Sn−1× [0,+∞) such that there exist an
open set ϒ̄ ⊃ Sn−1 and a function G : ϒ̄ × [0,+∞)→ R such that g is the restriction
of G to Sn−1 and G ∈C2,1(ϒ̄ ).

Notice that in the right hand side of (14), p is multiplied by:

κ

2

n−1

∑
i, j=1

Di j∂
2
i jg+

n−1

∑
i=1

Ωi∂ig = 0. (17)

Equation (17) is readily seen to be a steady backward equation. We now show that
the weak solutions have also conservation laws.

Theorem 3 Let p be a solution to (14) (we shall take (13) as a special case). Let
ϕ ∈S be in the kernel of (17). Then∫

Sn−1
p(x, t)ϕ(x)dx =

∫
Sn−1

p(x,0)ϕ(x)dx,

for almost every t ∈ [0,∞).

Proof Let η(t) ∈Cc([0,∞)), with η(0) = 1. Then

g(x, t) = η(t)ϕ(x)

is an admissible test function. On substituting in (14), we find that∫
∞

0

∫
Sn−1

p(x, t)ϕ(x)η ′(t)dxdt +
∫

Sn−1
p(x,0)ϕ(x)dx = 0.

Since η is an arbitrary function with compact support in [0,∞), the result follows. ut

A similar argument shows also the following

Theorem 4 Let p be a solution to (12). Then∫
Sn−1

p(x, t)dx =
∫

Sn−1
p(x,0)dx,

for almost every t ∈ [0,∞).
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Therefore, the conservation laws given by equation (4) now become

d
dt

∫
Sn−1

p(t,x)ϕ(x)dx = 0, (18)

where ϕ satisfies (17). In principle the condition set out by (18) seems to imply an
infinite (likely to be uncountable) number of conservation laws. The following result
shows that it is actually much more conspicuous:

Theorem 5 Let ei denote the vertices of Sn−1. Then there exist unique ρi, i= 1, . . . ,n−
1, with ρi(e j) = δi j that are solutions to (17). In addition, let ρ0 ≡ 1. Then, any so-
lution to (17) in S can be written as a linear combination of ρi, i = 0, . . . ,n− 1. In
particular its kernel, for solutions in S, has dimension n.

Proof Given a vertex ei, let e j be an adjacent vertex. Now we solve (17) in the seg-
ment e jei with boundary values δi j. In the segments not adjacent to ei define the
solution to be zero. This defines the solution in all one-dimensional simplices. For
each two-dimensional subsimplex, we now solve the Dirichlet problem with the data
from the previous step. Now, assume that we have the solution uniquely defined in all
subsimplices of dimension m. Repeating the construction above yields the solution in
all subsimplices of dimension m+1. Proceeding inductively, this yields a solution in
Sn−1 that is unique and admissible. Uniqueness follows from the maximum principle
applied at each subsimplex level. Let ϕ ∈S, and let

Φ(x) =
n

∑
i=1

ϕ(ei)ρi(x).

Then Φ ∈S. By the preceding argument, Φ and ϕ must agree at all edges of Sn−1.
Proceeding inductively once again yields that ϕ = Φ in Sn−1. ut

Thus, the solutions to (14) must satisfy:

d
dt

∫
Sn−1

ρi(x)p(x, t)dx = 0 , i = 1, · · · ,n . (19)

From a probabilistic viewpoint, the ρi, i = 1, . . . ,n, are naturally identified with
the fixation probability of type i. We now give a pure analytical argument for this
fact. In Section 5, we shall prove Theorem 7 which shows that the final state is given
by

p∞[pI] = lim
t→∞

p(·, t) =
n

∑
i=1

πi[pI]δei ,

where δei is a Dirac measure supported on the vertex ei ∈ Sn−1
N . Clearly, πi[pI] is

the fixation probability of type i in a population initially described by a probability
distribution pI.

Therefore,

πi[δx0 ] =
∫

ρi(x)p∞(x)dx =
∫

ρi(x)pI(x)dx =
∫

ρi(x)δx0(x)dx = ρi(x0).

Remark 6 In the neutral case, i.e., ψ(i)(x) = ψ( j)(x) for all i, j = 1, . . . ,n and x ∈
Sn−1, we define the neutral fixation probability πN

i [δx] = xi, which follows from the
fact that in the neutral case, ρi(x) = xi.
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5 The Replicator-Diffusion approximation

We now discuss the nature of solutions p to (1’) together with the conservation laws
(19). The main result of this section is Theorem 7. This must be understood as the
continuous counterpart of the Lemma 1. We do not refer to the discrete model to
prove this result. Our approach is based solely in the properties of the partial differ-
ential equation (1’), the restriction of the domain to the domain of interest, and the
associated conservation laws (19).

An outline of the proof of Theorem 7 is as follows: First, we show that a solu-
tion to (14) can be written as regular part plus a singular measure over the boundary.
Moreover, the regular part vanishes for large time. Repeating these arguments over
the lower dimensional subsimplices, and using the projection result in Proposition 5,
we arrive at a representation of p as a sum of its classical solution and a sum of sin-
gular measures that are uniformly supported on the descending chain of subsimplices
of Sn−1 down to the zeroth dimension. Since the solutions over the subsimplices also
have a regular part that vanishes, we can show that all measures that are not atom-
ically supported at the vertices should vanish for large time. Thus, conservation of
probability implies that the steady state of (14) is a sum of deltas.

Finally, we provide two applications. In Subsection 5.2, we study the dual equa-
tion. This will be the continuous limit of the evolution by the dual equation (backward
equation) of the discrete process and therefore its solution f (k, t) gives the fixation
probability at time t of a given type (to be prescribed by the boundary conditions
in the dual process) for a population initially at state k. This gives a generalization
for an arbitrary number of types and for arbitrary fitnesses of the celebrated Kimura
equation with reversed time (Kimura 1962). In the sequel, Subsection 5.3, we will
show that if one type dominates all other types then, for any initial condition, the fix-
ation probability of this type will be larger than the neutral fixation probability. This
shows, in particular, that for large populations, the most probable type to fixate will
be the one playing the Nash-equilibrium strategy of the game (assuming the identity
between fitness and pay-offs, which is standard in this framework). This is not true in
general for small populations (Nowak 2006).

5.1 Solution of the replicator-diffusion equation

We now study in more detail the features of the solution to (14) and show two impor-
tant results: first that in the interior of the simplex, the solution must satisfy (1’) in
the classical sense; second, no classical solution to (1’) can satisfy the conservation
laws. Throughout this section, we shall have the further assumption that the fitnesses
are smooth.

We start by showing that, in the interior, a weak solution is regular enough to be
a classical solution.

Lemma 3 Let p be a solution to (14). Let K ⊂ Sn−1 be a proper compact subset.
Then, in K, p satisfies (1’) in the classical sense. In particular, p∈C([0,T ];C∞(int(S))).
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Proof Let g ∈C∞
c (K), we have then the standard weak formulation of (1’) in K. On

the other hand, (1’) is uniformly parabolic in any proper subset. Hence the weak and
strong formulations coincide — c.f. (Evans 2010; Taylor 1996). The last statement
follows from int(S) = ∪K⊂SK, with K compact and K∩∂Sn−1 = /0. ut

The next two Lemmas show existence of a unique classical solution, and that such
a solution decays to zero for large time.

Lemma 4 Let p be a classical solution to (1’). Then

lim
t→∞

p(x, t) = 0, x ∈ intSn−1.

Proof We define µS(x) = x1x2 · · ·xn (such that µS(x)≥ 0 in Sn−1 with µS = 0 if and
only if x ∈ ∂Sn−1). Note that

n−1

∑
j=1

∂ j

(
Di j

µS

)
= µ

−1
S

[
n−1

∑
j=1

(δi j−δi jx j− xi)−
n−1

∑
j=1

(x jδi j− xix j)

(
1
x j
− 1

xn

)]
= 0 .

(20)
We introduce the new variable u = µS p and after some manipulations, we find

∂tu = µS∇ ·
[
µ
−1
S

(
κ

2
D∇u−Ωu

)]
, (21)

with D = (Di j)i, j=1,...,n−1 and Ω = ∑
n−1
i=1 Ωiei.

We now show that the last equation is well defined in Sn−1. For the second order
term, this follows from a new application of equation (20). For the first order term,
note that

µS∇ ·
(

Ωu
µS

)
= ∇ ·Ωu− Ω ·∇µS

µS
u+Ω ·∇u .

Furthermore

Ω ·∇µS

µS
=

n−1

∑
i=1

Ωi

(
1
xi
− 1

xn

)
=

n

∑
i=1

(
ψ

(i)(x)− ψ̄(x)
)
.

We shall now study the eigenvalue problem associated to (21) by considering
the dual problem, with respect to the measure (µS)

−1dx, and with regularised coeffi-
cients:  µ

(ε)
S ∇ ·

[
κ

2µ
(ε)
S

D(ε)∇ϕ(ε)

]
+ sΩ ·∇ϕ(ε) = λ (ε)ϕ(ε),

ϕ(ε) = 0 in ∂Sn−1 ,
(22)

where D(ε)(x) is a positive defined matrix in Sn−1, with D(ε) ε→0+−→ D uniformly in x,

and µ
(ε)
S > 0 in Sn−1, µ

(ε)
S

ε→0+−→ µS uniformly in x, and s is a real parameter.
First we observe that, for ε ≥ 0, equation (22) satisfies a maximum principle for

solutions in C2(int(Sn−1)); therefore if λ (ε) = 0 we have ϕ(ε) = 0 in Sn−1; see Cran-
dall et al. (1992). We conclude that λ (ε) 6= 0, for s ∈R and ε ≥ 0. Additionally, since
the coefficients are smooth, the solution to equation (22) is smooth in the interior by
standard elliptic regularity.
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For ε > 0, the dominant eigenvalue λ
(ε)
0 is real and from the maximum principle it

follows that λ
(ε)
0 6= 0. For s = 0, λ

(ε)
0 is negative and therefore from its continuity in s,

we conclude that λ
(ε)
0 < 0 for any s. Therefore, for any other eigenvalue Re

(
λ (ε)

)
≤

λ
(ε)
0 < 0 (see (Evans 2010) for further details).

Moreover, let εk→ 0 be a decreasing sequence of positive numbers, and ϕ(εk) ≥ 0
be the normalised eigenfunctions for the corresponding leading eigenvalues. Since
the coefficients are assumed smooth, the eigenfunctions are also smooth. Hence, by
Rellich theorem, there is a subsequence εk j such that ϕ

(εk j ) converges in L2(Sn−1).
By considering the weak formulation for equation (22), we immediately see that, for

this subsequence, we must also have λ
(εk j )

0 → λ0.
We thus have obtained a real negative eigenvalue λ0, with a real eigenfunction that

is single signed. Using the same argument in Evans (2010), we conclude that λ0 is
the principal eigenvalue for the nonregularised problem. Hence, any other eigenvalue
will satisfy Re(λ )≤ λ0.

This also shows that there exists α > 0, such that

1
2

∂t

∫
Sn−1

u2
µ
−1
S dx=

∫
Sn−1

µS∇·
[

µ
−1
S

(
1
2

D∇u−Ωu
)]

u µ
−1
S dx<−α

∫
Sn−1

u2
µ
−1
S dx.

Therefore ∫
p2

µSdx =
∫

u2
µ
−1
S dx t→∞→ 0 .

ut

Lemma 5 Equation (21) has a unique solution u ∈C
(
[0,∞);C∞(int

(
Sn−1

))
.

Proof Consider equation (21) with D = D(ε) and µS = µ
(ε)
S , with D(ε) and µ

(ε)
S as

in Lemma 4. For ε > 0, it is uniformly parabolic, and hence it has a unique solution
with the required regularity.

We write (21) in weak form as∫
∞

0

∫
Sn−1

u(ε)(t,x)∂tφ(t,x)
(

µ
(ε)
S

)−1
dxdt

+
∫

∞

0

∫
Sn−1

(
µ
(ε)
S

)−1
(

1
2

D∇u(ε)−Ωu(ε)
)
·∇φ(t,x)dxdt

+
∫

Sn−1
u(ε)(0,x)φ(0,x)

(
µ
(ε)
S

)−1
dx = 0.

We now observe that any such solution is bounded in ℵ = L2((0,T );W 2,1
0 ). Hence,

one can select a sequence εk ↓ 0 such that u(εk) → u∗ ∈ ℵ. Since (21) is weakly
parabolic, such a solution must be unique — Lieberman (1996). Finally, regularity
follows from Lemma 3. ut

The preceding two lemmas have an important consequence:
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Corollary 2 No solution to (1’) in the classical sense can satisfy the required con-
servation laws. In particular, this shows that the weak-formulation presented in The-
orem 2 is not only a device for obtaining the continuous limit, but it turns out to be
the correct formulation.

In view of Corollary 2, we turn back to the weak formulation given by (14) or,
equivalently, to (1’) together with the conservation laws (19). In what follows, we
obtain some more information about such solutions.

Remark 7 As an extension of Lemma 4.1 in Chalub and Souza (2009b), we observe
that if p is a Radon measure in Sn−1, we can write p = q+ r, with sing supp(q) ∈
∂Sn−1 and sing supp(r) ∈ intSn−1.

Proposition 5 (Face Projections) Let 1 ≤ k < n and let p be a solution to (14). Let
Sk−1 be a face of Sk. Assume that sing supp(p)∩Sk−1 6= /0. Then, over Sk−1, p satisfies
(14) in one less dimension with forcing given by the regular part of p evaluated at
xi = 0, for a certain value of i.

Proof Assume, without loss of generality, that i = 1. In view of remark 7, we can
write p = q+r, where sing supp(q)⊂ Sn−2 with the singular support of r lying in the
complement with respect to the full simplex. Moreover, we can also assume, without
loss of generality, that Sn−2 is given by the intersection of the hyperplane x1 = 0
with Sn−1. Let us write x = (x2, . . . ,xn). Let h be an appropriate test function in Sn−2,
satisfying h(x,0) = 0 and let η(x1) ∈ Cc([0,1]), with η(0) = 1. Then g = ηh is an
appropriate test function for Sn−1 and a direct computation with (14) then yields

−
∫

∞

0

∫
Sn−1

p(x1,x, t)∂tg(x1,x, t)dxdt

=
κ

2

∫
∞

0

∫
Sn−1

p(x1,x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x1,x, t)

)
dxdt

+
∫

∞

0

∫
Sn−1

p(x1,x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x1,x)− ψ̄(x1,x)
)

∂ jg(x1,x, t)

]
dx.

Over x1 = 0, on using the definition of g, we find that

−
∫

∞

0

∫
Sn−2

q(x, t)∂th(x, t)dxdt =
κ

2

∫
∞

0

∫
Sn−2

q(x, t)

(
n−1

∑
i, j=2

xi(δi j− x j)∂
2
i jh(x, t)

)
dxdt

+
∫

∞

0

∫
Sn−2

q(x, t)

[
n−1

∑
j=2

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jh(x, t)

]
dxdt.
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For r, we have

−
∫

∞

0

∫
Sn−1

r(x1,x, t)∂tg(x1,x, t)dxdt

=
κ

2

∫
∞

0

∫
Sn−1

r(x1,x, t)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x1,x, t)

)
dxdt

+
∫

∞

0

∫
Sn−1

r(x1,x, t)

[
n−1

∑
j=1

x j

(
ψ

( j)(x1,x)− ψ̄(x1,x)
)

∂ jg(x1,x, t)

]
dxdt.

By Lemma 3, r is smooth. Therefore, the above equation can be integrated by
parts to yield, an integral on Sn−1 that will cancel out identically, since r is a classical
solution to (1’), and a number of integrals over the various faces of Sn−1. In particular,
at x1 = 0, we find that

0 =−κ

2

∫
∞

0

∫
Sn−2

r(0,x, t)h(x, t)dxdt.

By collecting together the two calculations on x1 = 0, we obtain the result. ut

In what follows, we shall need some preliminaries. Recall — see Stanley (1996)
— that to the simplex Sn−1 is associated a corresponding f -vector, such that the entry
i+ 1 ( fi+1) is the number of i-dimensional subsimplices of Sn−1. We shall assume
that, for each dimension i, there is a definite order of the subsimplices Si, j, with
i = 0, . . . ,n− 1 and j = 1, . . . , fi+1. Moreover, we define the adjacent operator by
ad( j,k) which denotes the kth adjacent subsimplex of dimension i+1 to Si j. Notice
that there are n− i such simplexes.

Theorem 6 (Solution Structure) Equation (14), with a given initial condition pI ∈
BM+

(
Sn−1

)
, has a unique solution p ∈ L∞

(
[0,T ];BM+

(
Sn−1

))
. Moreover, let δ i j

be the Radon measure with unit mass uniformly supported on Si j. Then the solution
p can be written as

p(t,x) = pn1 + ∑
(i, j)∈I

pi jδ
i j, I =

(
∪n−1

i=0 {i}
)
×{1, . . . , fi+1}, (23)

where pi j satisfies

−
∫

∞

0

∫
Si j

pi j(x, t)∂tg(x, t)dxdt−
∫

Si j
pi j(x, t0)g(x, t0)dx

=
κ

2

∫
∞

0

∫
Si j

pi j(x, t)

(
n−1

∑
r,s=1

xr(δrs− xs)∂
2
rsg(x, t)

)
dxdt (24)

+
∫

∞

0

∫
Si j

pi j(x, t)

[
n−1

∑
s=1

xs

(
ψ

(s)(x)− ψ̄(x)
)

∂sg(x, t)

]
dxdt

+
∫

∞

0

∫
Si j

n−i

∑
k=1

p(i+1)ad( j,k)
∣∣
Si j dxdt.

The initial condition for (24) will be denoted pI
i j, and it is obtained from pI by apply-

ing the decomposition described in Remark 7 recursively.
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Proof By direct substitution into (14) and after a integrating by parts starting from
Sn−1, proceeding downwards until the vertices and using Lemma 5 one can verify
that (23) is indeed a solution. To verify uniqueness, let p̃ a solution to (14). Consider
p̃ restricted to Sn−1 and let pn1 be the classical solution guaranteed by Lemma 5. By
considering (14) with test functions with compact support on intSn−1, we see that
p̃− pn1 vanishes. Therefore sing supp(p̃− pn1)⊂ ∂Sn−1. By Remark 7, we can write
p̃ = pn1 + q, with sing supp(q) ⊂ ∂Sn−1. Now ∂Sn−1 is the union of fn−1 copies
of Sn−2. By Proposition 5, q must satisfies (24) in one less dimension in each of
the subsimplices. Proceeding inductively, we can now choose a subsimplex Sn−3 of
Sn−2. Now, we repeat the argument above for each simplex Sn−2 which has Sn−3 as a
subsimplex. Iterate until arrive at the simplices of zero dimension to get the result.

ut

This theorem leads to the following result:

Theorem 7 (Final State) Let

p∞(x) := lim
t→∞

p(x, t) ,

where p is the solution of equation (1) subject to conservation laws (19). Then p∞ is
a linear combination of point masses at the vertices of Sn−1,i.e,

p∞ =
n

∑
i=1

πi
[
pI]

δei . (25)

Proof First, we observe that Lemma 4 still holds if applied to inhomogeneous version
of (21), provided that the forcing decays for large times. The results now follows
from a straightforward application of Proposition 5 together with Lemma 4 applied
in a descending chain of simplices down to dimension 1. Conservation of probability
then yields that p∞ must be a sum of atomic measures at the vertices of Sn−1. On
using the other conservation laws, we obtain the coefficients, and hence the result.

ut

5.2 Duality and the Kimura equation

The formal adjoint of equation (1) (changing the flow of time from forward to back-
ward) provides a generalization of the celebrated Kimura equation (Kimura 1962),
both including more types and allowing frequency dependent fitness:

∂t f = L †
n−1,k f :=

κ

2

n−1

∑
i, j=1

Di j∂
2
i j f +

n−1

∑
i=1

Ωi∂i f . (26)

In diffusion theory this equation is associated with a martingale problem for the dif-
fusive continuous process. In genetics, the meaning of equation (26) is seldom made
clear and depends on the boundary conditions imposed. One possible and common
interpretation is as follows: given an homogeneous state ei ∈ ∆Sn−1, let fi(k, t) be
the probability that given a population initially in a well-defined state k ∈ Sn−1 (i.e.,
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pI(x) := p(x,0) = δk(x)) we find the population fixed at the homogeneous state ei at
time t (or before), i.e., fi(k, t) = 〈p(·, t),δei〉. In this case, we need to find consistent
boundary conditions. See Maruyama (1977); Etheridge (2011).

Let us study the fixation of type 1, represented by the state e1. Let us now call Vi
the face of the simplex with xi = 0 (type i is absent). Then, fi

∣∣
V1

= 0. For i 6= 1, fi
∣∣
Vi

is the solution of ∂t f = L †
n−2,k f , where the type i was omitted from the equation.

As the faces of the simplex are invariant under the adjoint evolution (one more fact
to be attributed to lack of mutations in the model), this represent the same problem
in one dimension less. We continue this procedure until we find the evolution in the
edge from vertex 1 to vertex i 6= 1, L1i. In this case, we have that f

∣∣
L1i

: [0,1]→ R,
the restriction of fi to this edge, with x1 being the fraction of type 1 individuals, is the
solution of

∂t f =
κ

2
x1(1− x1)∂

2
1 f + x1(1− x1)

(
ψ

(1)
1i (x1)−ψ

(i)
1i (x1)

)
∂1 f (27)

with boundary conditions given by f (0) = 0 and f (1) = 1 and ψ
( j)
1i (x1) =ψ( j)(x1e1+

(1− x1)ei) is the restriction of ψ( j) to the edge L1i. The forward and backward ver-
sions of Equation (27) are fully studied in the references (Chalub and Souza 2009b,a).
For ψ

(1)
1i −ψ

(i)
1i constant this is the Kimura equation.

5.3 Strategy dominance

Let us assume that ψ(1)(x) ≥ ψ(i)(x) for all x ∈ Sn−1. This happens, for example, if
we identify fitness functions with pay-offs in game theory, types with strategists, and
if strategist 1 plays the Nash-equilibrium strategy.

Therefore, we prove

Theorem 8 If, for all states x ∈ Sn−1, and all types i = 1, . . . ,n, ψ(1)(x) ≥ ψ(i)(x),
then the fixation probability of the first type is not less than the neutral fixation prob-
ability for any initial condition pI; i.e,

π1[pI]≥ π
N
1 [p

I] .

Proof First note that it is enough to prove that π1[δx]≥ πN
1 [δx] = x1 for all x ∈ Sn−1.

The difference ρ1(x)− x1 satisfy

κ

2

n−1

∑
i, j=1

Di j∂
2
i j (ρ1(x)− x1)+

n−1

∑
i=1

Ωi∂i (ρ1(x)− x1)=−Ω1 =−x1

(
ψ

(1)(x)− ψ̄(x)
)
≤ 0 ,

with vertex conditions ρ1(ei)− x1(ei) = 0 for i = 1, . . . ,n. Now, we proceed by in-
duction in n. For the case n = 2, the proof is in (Chalub and Souza 2009a, Section
4.3); we reproduce it here only for completeness.

We write explicitly the equation for ρ1:

κ

2
x(1− x)∂ 2

x ρ1 + x
(

ψ
(i)(x)− ψ̄(x)

)
∂xρ1 = 0
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with ρ1(0) = 0 and ρ1(1) = 1. We simplify the equation using the fact that ψ(1)(x)−
ψ̄(x) = (1− x)

(
ψ(1)(x)−ψ(2)(x)

)
and the solution is given by

ρ1(x) =

∫ x
0 exp

[
− 2

κ

∫ x̄
0

(
ψ(1)( ¯̄x)−ψ(2)( ¯̄x)

)
d ¯̄x
]

dx̄∫ 1
0 exp

[
− 2

κ

∫ x̄
0
(
ψ(1)( ¯̄x)−ψ(2)( ¯̄x)

)
d ¯̄x
]

dx̄
.

As ψ(1)(x)≥ ψ(2)(x), we conclude that

1
x

∫ x

0
exp
[
− 2

κ

∫ x̄

0

(
ψ

(1)( ¯̄x)−ψ
(2)( ¯̄x)

)
d ¯̄x
]

dx̄

≥
∫ 1

0
exp
[
− 2

κ

∫ x̄

0

(
ψ

(1)( ¯̄x)−ψ
(2)( ¯̄x)

)
d ¯̄x
]

dx̄ .

In particular, ρ1(x)≥ x.
Now, assume that ρ1(x)− x1 ≥ 0 for all x ∈ ∂Sn−1. (Note that ∂Sn−1 is an union

of a finite number of n− 2 dimensional simplexes, where by the principle of induc-
tion we assume the result valid.) Finally, we use the maximum principle for sub-
harmonic functions to conclude that the minimum cannot be in the interior of the
simplex (Courant and Hilbert 1989). Therefore ρ1(x)≥ x1 for all x ∈ Sn−1. ut

6 The Replicator Dynamics

In Section 4, we proved that, when genetic drift and selection balance, then there is a
special timescale such that the evolution of an infinite population can be described by
a parabolic partial differential equation. Nevertheless, in applications one is usually
interested in large but finite populations. In this case, an exact limit is not taken, and
(14) can be taken as an approximation of this evolution. We shall discuss this further
in the conclusions, but we observe that this equation might be a good approximation
even when balance is not exact, i.e., when ν and µ are close but not equal to one.
This could typically lead to an equation with κ being either quite large or small. In
the former case, a regular expansion in κ shows that the evolutions is governed by
(13). On the other hand, in the latter case, one expects that the much simpler transport
equation (15) will be a good approximation for the evolution. Indeed, in this section
we show that (1’) can be uniformly approximated by (15) in proper compact subsets
of the simplex, and over a time interval shorter than κ−1.

We start in Subsection 6.1 showing that the equation (15) is formally equivalent
to the replicator system. Afterwards, in Subsection 6.2, we answer what we believe
to be an important question: what exactly is the replicator equation modelling? In
particular, we will show, using a simple argument, that the replicator equation does
not model the evolution of the expected value (of a given trait) in the population,
but the evolution of the most common trait conditional on the absence of extinctions.
Finally, we show, in Subsection 6.3, that the replicator ordinary differential equation
is a good approximation for the initial dynamics of the Wright-Fisher process, when
κ is small. As in Section 5, we shall assume that the fitness functions are smooth.
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6.1 The replicator ODE and PDE

We shall now study in more detail the equation (15), which has a close connection
with the replicator dynamics as shown below:

Theorem 9 Assume that Ω is Lipschitz. Let Φt(x) the flow map of

dx
dt

= Ω(x(t)). (28)

and let
Q(x, t) =−

∫ t

0
(∇ ·Ω)(Φs−t(x))ds.

Let pI ∈ BM+
(
Sn−1

)
and assume that sing supp(pI) ⊂ int(Sn−1) (see Remark 7).

Then the solution to (15) with initial condition pI is given by

p(x, t) = eQ(x,t)pI (Φ−t(x)) . (29)

Proof We observe that, since Ω is Lipschitz, the push-forward of pI by Φt is well
defined—(Ambrosio et al. 2005). Hence, the proof is based on the methods of char-
acteristics; see John (1991); Evans (2010). See DiPerna and Lions (1989) for an ap-
proach that works even if Ω fails to be Lipschitz continuous. ut

Remark 8 If pI gives mass to the boundaries of SN−1, we write, as in Theorem 6:

pI = ∑
i, j

pI
i, j, with sing supp(pI

i, j)⊂ Si, j.

Moreover, notice that Ω restricted to Si, j is tangent to ∂Si, j. Hence, the restricted
dynamics is always well defined, and we can write Φ

i, j
t for the flow map of

dxi, j

dt
= Ω

i, j(xi, j(t)) and Qi, j(x, t) =−
∫ t

0

(
∇

i, j ·Ω i, j)(
Φ

i, j
s−t(x)

)
ds,

where Ω i, j is the restriction of Ω to Si, j, and ∇i, j ·Ω i, j is divergence in Si, j. Then,
repeated applications of Theorem 9 lead to the conclusion that the solution to (15) is
given by

p(x, t) = ∑
i, j

eQi, j(x,t)pI
i, j(Φ

i, j
−t (x)).

6.2 Peak and average dynamics

We start by showing that the long term dynamics of the average in the Wright-
Fisher process, even in the thermodynamical limit, is not governed by the replicator
equation. Consider for example, a population of n types, evolving according to the
replicator-diffusion equation with fitness functions given by ψ(i) : Sn−1→ R.

From the fact that the final state of the the replicator-diffusion equation is given
by equation (25), the coefficients πi[pI], i = 1, . . . ,n can be calculated in two ways:∫

ρi(x)pI(x)dx =
∫

ρi(x)p∞(x)dx = πi[pI] =
∫

xi p∞(x)dx =: 〈p∞〉i .
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Therefore the average of the probability distribution will converge to a certain point
of the simplex depending on the initial condition. This is completely different from
the replicator dynamics, as its solution converges to a single attractor, periodic orbits,
chaotic attractors, etc (Hofbauer and Sigmund 1998).

Now, we show that the probability distribution concentrates in the ESS; this shows
that the peak will behave in manner similar to the solutions of the replicator dynamics.

Recall that (Hofbauer and Sigmund 1998) an ESS that lies in interior of Sn−1

must be a global attractor of the replicator equation (28). We have then the following
result

Theorem 10 Assume pI ∈BM+
(
Sn−1

)
, sing supp pI ⊂ intSn−1 and assume that (28)

has a unique point x∗ such that for any initial condition x(0)∈ intSn−1, limt→∞ x(t) =
x∗. Then the solution of equation (15) is such that

lim
t→∞

p(x, t) = δx∗ .

Proof Assume, initially, that x∗ ∈ intSn−1. Since x∗ is a globally stable equilibrium
for interior initial points, we can find T > 0, such that, for t > T , and sufficiently
small δ > 0, we have, for any proper compact subset K ⊂ Sn−1, that:

Φt(K)⊂ Bδ (x∗)⊂ intSn−1.

where Bδ (x∗) is the open ball of radius δ and centered at x∗.
Let η(x) be a continuous function with support contained in K. Then, for t > T ,

we have that ∫
Sn−1

p(x, t)η(x)dx =
∫

Bδ (x∗)
p(x, t)η(x)dx.

But, let ε > 0 be given. Since η is continuous, possibly with a smaller δ > 0, we must
have

η(x∗)− ε ≤
∫

Bδ (x∗)
p(x, t)η(x)dx≤ η(x∗)+ ε, (30)

Now take (δk,εk) ↓ 0 such that (30) is satisfied. This yields a sequence of times Tk
such that Tk→ ∞ and

lim
k→∞

∫
Sn−1

p(x,Tk)η(x)dx = η(x∗).

Since Φs(K)⊂Φt(K), for s > t, the claim follows.
For the case x∗ ∈ ∂Sn−1, the result follows from similar arguments, replacing

Bδ (x∗) by Bδ (x∗)∩Sn−1. ut
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6.3 Asymptotic approximation

Let
0 < κ � 1.

If we perform a regular asymptotic expansion, i.e., if we write pκ ≈ p0 +κ p1 + · · · ,
then we find, for times t� κ−1, that the leading order dynamics is given by

∂t p0 +∇ · (p0Ω) = 0. (31)

The next theorem shows that this indeed the case, provided we see p0 as the
leading order dynamics with respect to the regular part of the probability density.

Theorem 11 Assume that the fitness are C2(Sn−1) functions, and that the initial con-
dition pI is also C2(Sn−1). Let rκ be the regular part of the solution of (1), with κ ≥ 0.
Then p0 is C2(Sn−1), and satisfies the conservation law (19). Moreover, if ∇ ·Ω ≥ 0,
then given κ and K positive, there exits a C such that, for t�Cκ−1, we have

‖rκ(·, t)− p0(·, t)‖∞ ≤Cκ

and
‖∂ 2

x p0(·, t)‖∞ > K

Thus p0 is the leading order asymptotic approximation to rκ , for t� κ−1C.

Proof The statements about p0 follows straightforward by obtaining the solution by
the method of characteristics.

Let wκ = rκ − p0. Then wκ satisfies

∂twκ =
κ

2

n−1

∑
i, j=1

∂
2
i j (Di jwκ)−

n−1

∑
i=1

∂i (Ωiwκ)+
κ

2
g0(x, t)

with null initial condition, where

g0(x, t) =
n−1

∑
i, j=1

∂
2
i, j (Di j p0) .

Notice that, because of the assumptions on pI, we have that g0 is uniformly bounded
in time.

The solution for such a problem is given by Duhammel principle. Let S(t, t0) be
associated solution operator. We have that

wκ(x, t) =
κ

2

∫ t

0
S(t,s)g0(s,x)ds.

By the maximum principle applied to the semigroup S(t2, t1), we have that ‖S(t,s)g0(s,x)‖≤
Ms, and by the uniform bound on g0, we have that there exists a constant M such that
Ms ≤M. Thus, we find that

‖S(t,s)g0(s,x)‖∞ ≤M.
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Hence
|wκ(x, t)| ≤ κt

M
2
.

Therefore, taking C = 2M−1, we find, for t�Cκ−1, that:

‖wκ(t, ·)‖∞� 1.

ut

Remark 9 If the condition on ∇ ·Ω is not satisfied, a similar proof shows that if t�
− log(κ) then the same conclusion holds. Notice also that this condition is satisfied
if the replicator has a globally stable equilibrium in the interior of Sn−1.

Proposition 6 Under the same hypothesis of Theorem 11, let U be an open set such
that U ⊂ Sn−1 and Ū ∩∂Sn−1 = /0. Then, there exists C > 0, such that∣∣∣∣∫U

(pκ(x, t)− p0(x, t))dx
∣∣∣∣<Cκt,

for any t.

Proof By Theorem 11, there exists C′ > 0 such that ‖rκ(·, t)− p0(·, t)‖∞ < C′κt,
which we write as:

−C′κt ≤ rk(x, t)− p0(x, t)<C′κt.

Integrating in U and using that sing supp(qκ)∩U = /0, the result follows.

Theorem 10 shows that, for sufficient large time, the support of the solution of
the replicator PDE, equation (15), will be concentrated in sufficiently small neigh-
bourhoods of x∗. In particular, this will be true for the maximum. For the replicator-
diffusion equation (1) this cannot be valid for any value of κ > 0 (as it was proved in
Theorem 7); however, for strong selection, the initial dynamics given by the replicator-
diffusion equation is similar to the one given by the replicator ODE. This is justified
by the following result:

Theorem 12 Assume that the replicator has a unique global attractor. Then, under
the same hypothesis of Theorem 11, we have that given ε > 0 and δ > 0 there exist a
time t∗ and a constant C > 0, depending only on the initial condition, such that∣∣∣∣∫Bε (x∗)

pκ(x, t)dx−1
∣∣∣∣<Cκt +δ ,

for t > t∗.

Proof We have∣∣∣∣∫Bε (x∗)
pκ(x, t)dx−1

∣∣∣∣≤ ∣∣∣∣∫Bε (x∗)
(pκ(x, t)− p0(x, t) dx

∣∣∣∣+ ∣∣∣∣∫Bε (x∗)
p0(x, t)dx−1

∣∣∣∣ .
From Theorem 11, we have a constant C > 0 such that∣∣∣∣∫Bε (x∗)

(pκ(x, t)− p0(x, t)) dx
∣∣∣∣<Cκt.
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From Theorem 10, we have that there exists a time t∗ such that, for t > t∗, we have∣∣∣∣∫Bε (x∗)
p0(x, t)dx−1

∣∣∣∣< δ .

Combining these two calculations yields the result.

7 Numerical results

We show, in this section, numerical results for two variants of the Rock-Scissor-Paper
game (Hofbauer and Sigmund 1998); i.e., fitness are identified with the pay-off from
game theory. In Subsection 7.1, we study the evolution of the discrete evolution nu-
merically in time, and show that the peak of distribution behaves accordingly to the
replicator equation while the average value of the same distribution converges to a
point which is not the ESS. In Subsection 7.2 we obtain explicitly the fixation prob-
ability of a given type for the symmetric Rock-Scissor-Paper game. A full animation
is available in the website indicated in the caption of figure 2.

7.1 Forward equation

We use evolutionary game theory (Smith 1982; Hofbauer and Sigmund 1998) to de-
fine the fitness function. More precisely, we define a pay-off matrix M=(Mi j)i, j=1,··· ,n
such that Mi j is the gain (in fitness) of the i type against the j type. The fitness of the
i type in a population at state x is

Ψ
(i)(x) =

n

∑
j=1

Mi jx j = (Mx)i . (32)

In a simulation where both effects, drift and diffusion, are apparent, we have µ =
ν = 1 and κ = O(1). The last identity implies ∆ t = O

(
N−1

)
. Furthermore, from

equation (7), we have ψ(i)(x) = 1
∆ t

(
Ψ (i)(x)−1

)
, and therefore, in order to see both

effects we need strong fitness functions and long times, i.e., ∆ t ≈ N−1� 1.
We consider in Figure 2 the evolution of a discrete population of N = 150 indi-

viduals with the pay-off matrix given by

M =

 30 81 29
6 30 104

106 4 30

 . (33)

This is know as the generalized Rock-Scissor-Paper game and presents an evolution-
ary stable state (ESS) (x∗,y∗,z∗) =

( 1
3 ,

1
3 ,

1
3

)
. Furthermore, the flow of the replicator

dynamics converges in spirals to the ESS. The vertices as well as (x∗,y∗,z∗) are equi-
librium points for the continuum dynamics. See Hofbauer and Sigmund (1998) for
the choice of values of the matrix M.
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Fig. 2 Solution for short times (1,3,6,10,15,21,28,35,44,54,65,77) of the Wright-Fisher evolution for a
population of 150 individuals of two given types, with fitness given by equations (32) and (33) for a
distribution initially concentrated in the interior non-stationary point 1

150 (70,70,10). The value of the
distribution P(x,y, t) is in logarithmic scale. Note that the cyan spot, marking the interior peak of the
probability distribution rotates and converges to the ESS

( 1
3 ,

1
3 ,

1
3

)
(along characteristics of the PDE or,

equivalently, the trajectories of the replicator dynamics). At the same time, the green spot marks the mean
value of the probability distribution and also rotates initially. After a long time, it moves toward its final
position, given by x∞ :=

(
F(1)

pI ,F(2)
pI ,1−F(1)

pI −F(2)
pI

)
≈ (0.331,0.227,0.442). For a full animation, also

for different population sizes N, see http://dl.dropbox.com/u/11325424/WFsim/RSPFinal.html

Note that the peak moves in inward spirals around the central equilibrium, fol-
lowing the trajectories of the replicator dynamics, while all the mass diffuses to the
boundary.

The green spot indicates the average value for x and y; at first it moves in spi-
rals close to the trajectories of the replicator dynamics. After a time depending on
the value of N it starts to move in the direction of its final point (x∞,y∞,z∞) =
(π1[pI],π2[pI],π3[pI]). This point can be calculated using equation (25) and the n = 3
independent conservation laws.



36 Fabio A. C. C. Chalub, Max O. Souza

Fig. 3 Fixation probability of the third type, in a Rock-Scissor-Paper game. This is the numerical solution
of the stationary state of the equation (26), simulated by a Wright-Fisher process with N = 150 and pay-
off matrix ([[20,0,40], [40,20,0], [0,40,20]]). Note that higher values of the fixation probability “rotates”
around the center of the simplex (the stationary state of the replicator dynamics).

7.2 Backward equation and the decay of the interior L1-norm

The stationary state of the backward equation (26) represents the fixation of probabil-
ity of a given type. This type is specified by the associated boundary conditions. Let
us consider, as an example, that n = 3, the evolution is given by the Rock-Scissor-
Paper game defined by the matrix

M =

 0 40 20
20 0 40
40 20 0

 , (34)

and we study the fixation probability of the third type. An exact solution is difficult
to obtain, as it would be necessary to solve an hierarchy of equations, each solution
representing boundary conditions of a larger set; however, a numerical solution is
extremely easy to compute, as the Wright-Fisher process is a natural discretisation
of the (forward as well as the) backward equation (cf. Theorem 5). This is probably
computationally inefficient, and different processes can be compatible with the same
limit equations. See figure 3 for an illustration.

In figure 4, we plot the L1 norm in the interior of the simplex and all subsimplexes,
showing that that the probability mass flows from the simplex Sn−1 to the faces (which
are equivalent to the simplexes Sn−2); the solution behaves on the faces as the solution
of the replicator-diffusion problem with one dimension less. The probability flows to
the “faces of the faces”, i.e., to simplexes Sn−3 until it reaches the absorbing state ei
(simplexes S0) for i = 1, . . . ,n. We may think of a stochastic process reaching and
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Fig. 4 Evolution of the probability mass, for the Rock-Scissor-Paper game given by matrix (34) and with
initial condition concentrated in the ESS, pI = δ( 1

3 ,
1
3 )

. The red line indicates the mas (L1-norm) in the
interior of the simplex; the blue line, the mass in the interior any of the faces, and the black line, the mass
in any of the vertices.

sticking to the faces of the simplex until they reach their final spot, the vertices. We
further observe that, the probability mass in the interior of the simplex is the so-called
quasi-stationary distribution of the process, namely, the probability distribution given
that it has not been absorbed. See Méléard and Villemonais (2012) for a recent survey
on the topic.

8 Conclusions

We present a derivation of continuous limits of discrete Markov chain evolutionary
models, that are frequency-dependent extensions the classical Wright-Fisher model,
through pure analytical techniques. The derivation presented pays close attention to
the variety of possible time scalings possible as related to the selection and popu-
lation size that are measured by two parameters µ,ν ≥ 1. The balance of diffusion
and selection (µ = ν = 1 in our terminology) can be seen as slight extension of the
results in (Ethier and Kurtz 1986, Chapter 10) using analytical methods instead of
probabilistic arguments, and that favours the forward Fokker-Planck equation instead
of the backward. In this sense, from a mathematical point of view, the weak formula-
tion presented for the forward equation seems to be new, in particular for the minimal
assumptions on the fitness functions. The case µ > ν = 1 yields a hyperbolic equation
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that is the PDE version of the replicator equation. An apparently similar result can be
found in (Ethier and Kurtz 1986, Chapter 11), which would correspond formally to
take ∆ t = 1 and N� 1, without using explicit scaling between these two variables.

With some additional regularity assumptions on the fitnesses functions, we can
show that (14) is equivalent to (1’) together with the conservation laws (19). In partic-
ular, this allows to characterise the behaviour of p on the lower dimensional subsim-
plices of Sn−1. This can be used to obtain equations for the probability of extinction
among other information.

The results here are also related to results in Champagnat et al. (2006, 2008),
where the idea that the underling scaling influences the macroscopic model was al-
ready present, although in a less explicit way than here. Nevertheless, the accelerated
birth-death regime in Champagnat et al. (2008) can be seen as a counterpart to our
scaling of ∆ t and N. On the other hand, the scaling for the fitness are taken as fixed
(corresponding to our ν = 1 in our terminology), and this explains why they do not
obtain the pure diffusive limit in the large population regime. Notice also that the
large population regime taken there seems to annihilate any stochastic effects coming
from births and deaths, and that the stochastic effects in this limit are due only to the
mutation process.

However, as pointed out above, as we allow more flexibility in the scaling laws,
we are able to highlight any of these two factors independently; more precisely, for
certain choices of the scaling in the fitnesses functions (namely, the exponent ν > 1),
their influence in the dynamics goes to zero so fast that the limit model is purely
diffusive. On the other hand, if we grow the population size fast enough (i.e., µ > 1)
then we highlight the deterministic evolution, providing a direct way to compare the
replicator equation with the Wright-Fisher process (or, for that matter, also with the
Moran process, but, naturally, in a different time scale). To the best of our knowledge,
this explicit comparison is new. See also Fournier and Méléard (2004) for a similar
approach.

The use of ordinary differential equations in population dynamics is widespread.
However, as they are valid only for infinite populations, and real populations are
always finite, the precise justification of its use and the precise meaning of its so-
lution is seldom made clear. In this paper, we showed, in a limited framework, but
expanding results from previous works (Chalub and Souza 2009b,a), that ODEs can
be justifiably used to model the evolution of a population. However, the validity of
the modelling is necessarily limited in time (increasing with the population size),
and the solution of the differential equation models the most probable state of the
system (therefore, the differential equation would give answers compatible with the
maximum likelihood method, but not necessarily compatible with other estimators).

One of the central issues of the present work is to discuss the possibility of using
diffusive approximation for large, but finite, N. However, a major challenge to any
one interested to use the replicator-diffusion equation to fit experimental data is the
value of κ .

From the derivation of the replicator-diffusion equation, we see that κ is directly
linked to the variance of the diffusion, while ‖ψ‖∞ is directly linked with natural
selection. Hence, their ratio is an adimensional measure of the relative relevance of
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the genetic drift with respect to natural selection. If we normalise the fitness functions
such that ‖ψ‖∞ = 1, then κ becomes a measure of such relative relevance.

In this sense, κ−1 could be an alternative definition of effective population size
(see also Etheridge (2011) for usual definitions). Only when the population is small
or times are long in the evolutionary scale, we would expect order 1 values of κ .

We are currently applying a similar technique to epidemiological models; in this
case it is necessary to impose boundary conditions in part of the boundary (as an
homogeneous population of infected individual is not stationary, as infected individ-
uals become, with time, removed or even susceptible) and it is impossible to impose
boundary conditions in part of the boundary (a population of susceptible remains in
this state for ever). Early results were already published in Chalub and Souza (2011).
The same problem, regarding the imposition of boundary conditions is true if we
include mutations in the Moran or Wright-Fisher model. This is work in progress.
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A Third moment of multinomial distributions

Let α be a multinomially distributed vector. Let also ∂i =
∂

∂qi
and |q|= ∑i qi (not necessarily equal to 1).

Evidently ∂iq j = δi j . Then:

E[αiα jαk] =

{
∑
α

αiα jαk f (q,α,N)

}
|q|=1

=
{

qi∂i
[
q j∂ j

(
qk∂k|q|N

)]}
|q|=1

= N[qiδi jδk j]+N(N−1)
[
qiqkδi j +qiq jδk j +qkq jδki

]
+N(N−1)(N−2)qiq jqk .

The expression for the third moment now follows from a straightforward calculation.

B Weak formulation in time

In order to obtain a truly weak formulation, without any requirement upon the regularity of p, we observe
that the equation (9) is valid for any time tk = t0 +k∆ t. Hence, if we also let T = (m+1)∆ t in the equation
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(9), and sum over k, we obtain that

m

∑
k=0

∑
x∈Sn−1

N

(pN(x, tk+1)− pN(x, tk))g(x, tk)

=
1

2N

m

∑
k=0

∑
x∈Sn−1

N

pN(x, tk)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, tk)

)

+
m

∑
k=0

(∆ t)ν
∑

x∈Sn−1
N

p(x, tk)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jg(x, tk)

]
dx.

On summing by parts the left hand side, we obtain

−
m−1

∑
k=0

∑
x∈Sn−1

N

pN(x, tk)(g(x, tk+1)−g(x, tk))

− ∑
x∈Sn−1

pN(x, t0)g(x, t0)dx+ ∑
x∈Sn−1

N

pN(x,T )g(x,T )

=
1

2N

m

∑
k=0

∑
x∈Sn−1

N

pN(x, tk)

(
n−1

∑
i, j=1

xi(δi j− x j)∂
2
i jg(x, tk)

)

+
m

∑
k=0

(∆ t)ν
∑

x∈Sn−1

p(x, tk)

[
n−1

∑
j=1

x j

(
ψ

( j)(x)− ψ̄(x)
)

∂ jg(x, tk)

]
.
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