229 research outputs found

    Campagne Chalci 79-01 (13/3/1979-31/3/1979): résultats des chalutages

    Get PDF
    In the line of the Chalci campaigns 78-01 and 78-02, the aim of this campaign too was the trawl exploration of the Ivoirian continental shelf at the depth of 10 to 120 metres

    Direct competition results from strong competiton for limited resource

    Get PDF
    We study a model of competition for resource through a chemostat-type model where species consume the common resource that is constantly supplied. We assume that the species and resources are characterized by a continuous trait. As already proved, this model, although more complicated than the usual Lotka-Volterra direct competition model, describes competitive interactions leading to concentrated distributions of species in continuous trait space. Here we assume a very fast dynamics for the supply of the resource and a fast dynamics for death and uptake rates. In this regime we show that factors that are independent of the resource competition become as important as the competition efficiency and that the direct competition model is a good approximation of the chemostat. Assuming these two timescales allows us to establish a mathematically rigorous proof showing that our resource-competition model with continuous traits converges to a direct competition model. We also show that the two timescales assumption is required to mathematically justify the corresponding classic result on a model consisting of only finite number of species and resources (MacArthur, R. Theor. Popul. Biol. 1970:1, 1-11). This is performed through asymptotic analysis, introducing different scales for the resource renewal rate and the uptake rate. The mathematical difficulty relies in a possible initial layer for the resource dynamics. The chemostat model comes with a global convex Lyapunov functional. We show that the particular form of the competition kernel derived from the uptake kernel, satisfies a positivity property which is known to be necessary for the direct competition model to enjoy the related Lyapunov functional

    A simple mathematical model of gradual Darwinian evolution: Emergence of a Gaussian trait distribution in adaptation along a fitness gradient

    Get PDF
    We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.Comment: 21 pages, 2 figures, as accepted to J Math Biol 2013/03/1

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-

    Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel

    Full text link
    We investigate super-resolution methods for image reconstruction from data provided by a family of scanning instruments like the Herschel observatory. To do this, we constructed a model of the instrument that faithfully reflects the physical reality, accurately taking the acquisition process into account to explain the data in a reliable manner. The inversion, ie the image reconstruction process, is based on a linear approach resulting from a quadratic regularized criterion and numerical optimization tools. The application concerns the reconstruction of maps for the SPIRE instrument of the Herschel observatory. The numerical evaluation uses simulated and real data to compare the standard tool (coaddition) and the proposed method. The inversion approach is capable to restore spatial frequencies over a bandwidth four times that possible with coaddition and thus to correctly show details invisible on standard maps. The approach is also applied to real data with significant improvement in spatial resolution.Comment: Astronomy & Astrophysic

    Stochasticity in the adaptive dynamics of evolution: The bare bones

    Get PDF
    First a population model with one single type of individuals is considered. Individuals reproduce asexually by splitting into two, with a population-size-dependent probability. Population extinction, growth and persistence are studied. Subsequently the results are extended to such a population with two competing morphs and are applied to a simple model, where morphs arise through mutation. The movement in the trait space of a monomorphic population and its possible branching into polymorphism are discussed. This is a first report. It purports to display the basic conceptual structure of a simple exact probabilistic formulation of adaptive dynamics

    The frequency-dependent Wright-Fisher model: diffusive and non-diffusive approximations

    Get PDF
    We study a class of processes that are akin to the Wright-Fisher model, with transition probabilities weighted in terms of the frequency-dependent fitness of the population types. By considering an approximate weak formulation of the discrete problem, we are able to derive a corresponding continuous weak formulation for the probability density. Therefore, we obtain a family of partial differential equations (PDE) for the evolution of the probability density, and which will be an approximation of the discrete process in the joint large population, small time-steps and weak selection limit. If the fitness functions are sufficiently regular, we can recast the weak formulation in a more standard formulation, without any boundary conditions, but supplemented by a number of conservation laws. The equations in this family can be purely diffusive, purely hyperbolic or of convection-diffusion type, with frequency dependent convection. The particular outcome will depend on the assumed scalings. The diffusive equations are of the degenerate type; using a duality approach, we also obtain a frequency dependent version of the Kimura equation without any further assumptions. We also show that the convective approximation is related to the replicator dynamics and provide some estimate of how accurate is the convective approximation, with respect to the convective-diffusion approximation. In particular, we show that the mode, but not the expected value, of the probability distribution is modelled by the replicator dynamics. Some numerical simulations that illustrate the results are also presented

    3D Fluid Flow Estimation with Integrated Particle Reconstruction

    Full text link
    The standard approach to densely reconstruct the motion in a volume of fluid is to inject high-contrast tracer particles and record their motion with multiple high-speed cameras. Almost all existing work processes the acquired multi-view video in two separate steps, utilizing either a pure Eulerian or pure Lagrangian approach. Eulerian methods perform a voxel-based reconstruction of particles per time step, followed by 3D motion estimation, with some form of dense matching between the precomputed voxel grids from different time steps. In this sequential procedure, the first step cannot use temporal consistency considerations to support the reconstruction, while the second step has no access to the original, high-resolution image data. Alternatively, Lagrangian methods reconstruct an explicit, sparse set of particles and track the individual particles over time. Physical constraints can only be incorporated in a post-processing step when interpolating the particle tracks to a dense motion field. We show, for the first time, how to jointly reconstruct both the individual tracer particles and a dense 3D fluid motion field from the image data, using an integrated energy minimization. Our hybrid Lagrangian/Eulerian model reconstructs individual particles, and at the same time recovers a dense 3D motion field in the entire domain. Making particles explicit greatly reduces the memory consumption and allows one to use the high-res input images for matching. Whereas the dense motion field makes it possible to include physical a-priori constraints and account for the incompressibility and viscosity of the fluid. The method exhibits greatly (~70%) improved results over our recently published baseline with two separate steps for 3D reconstruction and motion estimation. Our results with only two time steps are comparable to those of sota tracking-based methods that require much longer sequences.Comment: To appear in International Journal of Computer Vision (IJCV
    corecore